ﻻ يوجد ملخص باللغة العربية
We present a theoretical foundation for the Index theorem in naive and minimally doubled lattice fermions by studying the spectral flow of a Hermitean version of Dirac operators. We utilize the point splitting method to implement flavored mass terms, which play an important role in constructing proper Hermitean operators. We show the spectral flow correctly detects the index of the would-be zero modes which is determined by gauge field topology. Using the flavored mass terms, we present new types of overlap fermions from the naive fermion kernels, with a number of flavors that depends on the choice of the mass terms. We succeed to obtain a single-flavor naive overlap fermion which maintains hypercubic symmetry.
We have performed the first numerical study of minimally doubled fermions of the Karsten-Wilczek class in the quenched approximation. This requires fixing the counterterms, which arise due to hypercubic symmetry breaking induced by the Karsten-Wilcze
Recently, the interest in local lattice actions for chiral fermions has revived, with the proposition of new local actions in which only the minimal number of doublers appear. The trigger role of graphene having a minimally doubled, chirally invarian
A way to identify the would-be zero-modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accor
We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic gauge configurations. We study both the unimproved and the HISQ Dirac operators. We compare the spectral flow index with the index obtained
HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in