ﻻ يوجد ملخص باللغة العربية
We discuss the gluon propagator in 3- and 4-dimensional Yang-Mills theories in Coulomb gauge and compare it with the corresponding Landau gauge propagator, showing that for both the relevant IR mass scale coincides. We also report preliminary results on Coulomb gauge ghost form factor and quark propagators and give a comment on the gluon propagators strong coupling limit.
We show that in the lattice Hamiltonian limit all Coulomb gauge propagators are consistent with the Gribov-Zwanziger confinement mechanism, with an IR enhanced effective energy for quarks and gluons and a diverging ghost form factor compatible with a
We review our lattice results concerning the Gribov-Zwanziger confinement mechanism in Coulomb gauge. In particular, we verify the validity of Gribovs IR divergence condition for the Coulomb ghost form factor. We also show how the quark self-energy i
We calculate the lattice quark propagator in Coulomb gauge both from dynamical and quenched configurations. We show that in the continuum limit both the static and full quark propagator are multiplicatively renormalizable. From the propagator we extr
We present SU(3) gluon propagators calculated on 48*48*48*N_t lattices at beta=6.8 where N_t=64 (corresponding the confinement phase) and N_t=16 (deconfinement) with the bare gauge parameter,alpha, set to be 0.1. In order to avoid Gribov copies, we e
We propose to investigate infrared properties of gluon and ghost propagators related to the so-called Gribov-Zwanziger confinement scenario, originally formulated for Landau and Coulomb gauges, for other gauges as well. We present results of our inve