ﻻ يوجد ملخص باللغة العربية
Very high-energy (VHE, E,$>$,100,GeV) $gamma$-ray data are a valuable input for multi-wavelength and multi-messenger (e.g. combination with neutrino data) studies. We aim at the conservation and homogenization of historical, current, and future {VHE $gamma$-ray-data} on active galactic nuclei (AGN). We have collected lightcurve data taken by major VHE experiments since 1991 and combined them into long-term lightcurves for several AGN, and now provide our collected datasets for further use. Due to the lack of common data formats in VHE $gamma$-ray astronomy, we have defined relevant datafields to be stored in standard data formats. The time variability of the combined VHE lightcurve data was investigated, and correlation with archival X-ray data collected by {{em RXTE}/ASM} tested. The combination of data on the prominent blazar Mrk,421 from different experiments yields a lightcurve spanning more than a decade. From this combined dataset we derive an integral baseline flux from Mrk,421 that must be lower than 33,% of the Crab Nebula flux above 1,TeV. The analysis of the time variability yields log-normal flux variations in the VHE-data on Mrk,421. Existing VHE data contain valuable information concerning the variability of AGN and can be an important ingredient for multi-wavelength or multi-messenger studies. In the future, upcoming and planned experiments will provide more data from many transient objects, and the interaction of VHE astronomy with classical astronomy will intensify. In this context a unified and exchangeable data format will become increasingly important. Our data collection is available at the url: {tt {http://nuastro-zeuthen.desy.de/magic_experiment/projects/light_curve_archive/index_eng.html}}.
Future missions for long gammma-ray burst (GRB) observations at high redshift such as HiZ-GUNDAM and THESEUS will provide clue to the star formation history in our universe. In this paper focusing on high redshift (z>8) GRBs, we calculate the detecti
The synchrotron self-Compton (SSC) emission from Gamma-ray Burst (GRB) forward shock can extend to the very-high-energy (VHE; $E_gamma > $100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before re
The Fermi Large Area Telescope (LAT) observed two bright X-class solar flares on 2012 March 7, and detected gamma-rays up to 4 GeV. We detected gamma-rays both during the impulsive and temporally-extended emission phases, with emission above 100 MeV
Magnetar wind nebulae (MWNe), created by new-born millisecond magnetars, and magnetar giant flares are PeVatron candidates and even potential sources of ultra high energy ($E>10^{18} textrm{ eV}$) cosmic rays (UHECRs). Nonthermal high-energy (HE, $E>
PKS 0625-354 (z=0.055) was observed with the four H.E.S.S. telescopes in 2012 during 5.5 hours. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1$sigma$. No significant variability is found in these observati