ترغب بنشر مسار تعليمي؟ اضغط هنا

On Combining Data From Genome-Wide Association Studies to Discover Disease-Associated SNPs

150   0   0.0 ( 0 )
 نشر من قبل Ruth M. Pfeiffer
 تاريخ النشر 2010
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Combining data from several case-control genome-wide association (GWA) studies can yield greater efficiency for detecting associations of disease with single nucleotide polymorphisms (SNPs) than separate analyses of the component studies. We compared several procedures to combine GWA study data both in terms of the power to detect a disease-associated SNP while controlling the genome-wide significance level, and in terms of the detection probability ($mathit{DP}$). The $mathit{DP}$ is the probability that a particular disease-associated SNP will be among the $T$ most promising SNPs selected on the basis of low $p$-values. We studied both fixed effects and random effects models in which associations varied across studies. In settings of practical relevance, meta-analytic approaches that focus on a single degree of freedom had higher power and $mathit{DP}$ than global tests such as summing chi-square test-statistics across studies, Fishers combination of $p$-values, and forming a combined list of the best SNPs from within each study.



قيم البحث

اقرأ أيضاً

In Genome-Wide Association Studies (GWAS) where multiple correlated traits have been measured on participants, a joint analysis strategy, whereby the traits are analyzed jointly, can improve statistical power over a single-trait analysis strategy. Th ere are two questions of interest to be addressed when conducting a joint GWAS analysis with multiple traits. The first question examines whether a genetic loci is significantly associated with any of the traits being tested. The second question focuses on identifying the specific trait(s) that is associated with the genetic loci. Since existing methods primarily focus on the first question, this paper seeks to provide a complementary method that addresses the second question. We propose a novel method, Variational Inference for Multiple Correlated Outcomes (VIMCO), that focuses on identifying the specific trait that is associated with the genetic loci, when performing a joint GWAS analysis of multiple traits, while accounting for correlation among the multiple traits. We performed extensive numerical studies and also applied VIMCO to analyze two datasets. The numerical studies and real data analysis demonstrate that VIMCO improves statistical power over single-trait analysis strategies when the multiple traits are correlated and has comparable performance when the traits are not correlated.
We study variance estimation and associated confidence intervals for parameters characterizing genetic effects from genome-wide association studies (GWAS) misspecified mixed model analysis. Previous studies have shown that, in spite of the model miss pecification, certain quantities of genetic interests are estimable, and consistent estimators of these quantities can be obtained using the restricted maximum likelihood (REML) method under a misspecified linear mixed model. However, the asymptotic variance of such a REML estimator is complicated and not ready to be implemented for practical use. In this paper, we develop practical and computationally convenient methods for estimating such asymptotic variances and constructing the associated confidence intervals. Performance of the proposed methods is evaluated empirically based on Monte-Carlo simulations and real-data application.
We provide a view on high-dimensional statistical inference for genome-wide association studies (GWAS). It is in part a review but covers also new developments for meta analysis with multiple studies and novel software in terms of an R-package hierin f. Inference and assessment of significance is based on very high-dimensional multivariate (generalized) linear models: in contrast to often used marginal approaches, this provides a step towards more causal-oriented inference.
Motivation: The rapid growth in genome-wide association studies (GWAS) in plants and animals has brought about the need for a central resource that facilitates i) performing GWAS, ii) accessing data and results of other GWAS, and iii) enabling all us ers regardless of their background to exploit the latest statistical techniques without having to manage complex software and computing resources. Results: We present easyGWAS, a web platform that provides methods, tools and dynamic visualizations to perform and analyze GWAS. In addition, easyGWAS makes it simple to reproduce results of others, validate findings, and access larger sample sizes through merging of public datasets. Availability: Detailed method and data descriptions as well as tutorials are available in the supplementary materials. easyGWAS is available at http://easygwas.tuebingen.mpg.de/. Contact: [email protected]
We approach the problem of combining top-ranking association statistics or P-value from a new perspective which leads to a remarkably simple and powerful method. Statistical methods, such as the Rank Truncated Product (RTP), have been developed for c ombining top-ranking associations and this general strategy proved to be useful in applications for detecting combined effects of multiple disease components. To increase power, these methods aggregate signals across top ranking SNPs, while adjusting for their total number assessed in a study. Analytic expressions for combined top statistics or P-values tend to be unwieldy, which complicates interpretation, practical implementation, and hinders further developments. Here, we propose the Augmented Rank Truncation (ART) method that retains main characteristics of the RTP but is substantially simpler to implement. ART leads to an efficient form of the adaptive algorithm, an approach where the number of top ranking SNPs is varied to optimize power. We illustrate our methods by strengthening previously reported associations of $mu$-opioid receptor variants with sensitivity to pain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا