ترغب بنشر مسار تعليمي؟ اضغط هنا

Dense molecular gas toward W49A: A template for extragalactic starbursts?

201   0   0.0 ( 0 )
 نشر من قبل Floris van der Tak
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Helen Roberts




اسأل ChatGPT حول البحث

The HCN, HCO+, and HNC molecules are commonly used as tracers of dense star-forming gas in external galaxies, but such observations are spatially unresolved. Reliably inferring the properties of galactic nuclei and disks requires detailed studies of sources whose structure is spatially resolved. We compare the spatial distributions and abundance ratios of HCN, HCO+, and HNC in W49A, the most massive and luminous star-forming region in the Galactic disk, based on maps of a 2 (6.6 pc) field at 14 (0.83 pc) resolution of the J=4-3 transitions of HCN, H13CN, HC15N, HCO+, H13CO+, HC18O+ and HNC. The kinematics of the molecular gas in W49A appears complex, with a mixture of infall and outflow motions. Both the line profiles and comparison of the main and rarer species show that the main species are optically thick. Two clumps of infalling gas appear to be at ~40 K, compared to ~100 K at the source centre, and may be ~10x denser than the rest of the outer cloud. Chemical modelling suggests that the HCN/HNC ratio probes the current gas temperature, while the HCN/HCO+ ratio and the deuterium fractionation were set during an earlier, colder phase of evolution. The data suggest that W49A is an appropriate analogue of an extragalactic star forming region. Our data show that the use of HCN/HNC/HCO+ line ratios as proxies for the abundance ratios is incorrect for W49A, suggesting the same for galactic nuclei. Our observed isotopic line ratios such as H13CN/H13CO+ approach our modeled abundance ratios quite well in W49A. The 4-3 lines of HCN and HCO+ are much better tracers of the dense star-forming gas in W49A than the 1-0 lines. Our observed HCN/HNC and HCN/HCO+ ratios in W49A are inconsistent with homogeneous PDR or XDR models, indicating that irradiation hardly affects the gas chemistry in W49A. Overall, the W49A region appears to be a useful template for starburst galaxies.



قيم البحث

اقرأ أيضاً

Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large ($gtrsim 50$~pc) and massive ($gtrsim 10^5$~$M_odot$) filaments, know as giant molecular filaments (GMFs), may be linked to galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. We have imaged one entire GMF located at $lsim$52--54$^circ$ longitude, GMF54 ($sim$68~pc long), in the empirical dense gas tracers using the HCN(1--0), HNC(1--0), HCO$^+$(1--0) lines, and their $^{13}$C isotopologue transitions, as well as the N$_2$H$^+$(1--0) line. We study the dense gas distribution, the column density probability density functions (N-PDFs) and the line ratios within the GMF. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to $^{13}$CO(1--0). We constructed the N-PDFs of H$_2$ for each of the dense gas tracers based on their column densities and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log-log representation, and the HCO$^+$ N-PDF has the largest log-normal width and flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star forming and Photon-Dominate Regions (PDRs) have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N$_2$H$^+$/$^{13}$CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except ULIRGs.
144 - Desika Narayanan 2005
The role of star formation in luminous and ultraluminous infrared galaxies is a hotly debated issue: while it is clear that starbursts play a large role in powering the IR luminosity in these galaxies, the relative importance of possible enshrouded A GNs is unknown. It is therefore important to better understand the role of star forming gas in contributing to the infrared luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as an effective tracer for warm-dense molecular gas heated by active star formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals, LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter Telescope on Mt. Graham, Arizona. Our main results are the following: 1. We find a nearly linear relation between the infrared luminosity and warm-dense molecular gas such that the infrared luminosity increases as the warm-dense molecular gas to the power 0.92; We interpret this to be roughly consistent with the recent results of Gao & Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128 L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km s^-1)^-1. If this conversion factor is ~an order of magnitude less, as suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our objects may have significant contributions to the L_IR by dust-enshrouded AGNs.
We present the 3 mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Fifteen molecular lines from 13 different molecular species and isotopologues were identified, and 21 out of 28 sources were detec ted in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN (1-0) and HCO$^{+}$(1-0), to $^{13}$CO (1-0) are 3-4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of $^{13}$CO and high dense gas fractions suggested by high HCN (1-0)/$^{12}$CO (1-0) ratios. We calculate the IR-to-HCN (1-0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source (1.1-6.5) $times 10^{3}$ $L_{odot}$/(K km s$^{-1}$ pc$^{2}$). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2-3 than those of the early/mid-stage mergers and non-merging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-$^{12}$CO (1-0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the post-merger phase.
185 - Philip F. Hopkins 2012
We show that the mass fraction of GMC gas (n>100 cm^-3) in dense (n>>10^4 cm^-3) star-forming clumps, observable in dense molecular tracers (L_HCN/L_CO(1-0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback. Using high-resol ution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds, and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback. In models with weak/no feedback, much of the mass in GMCs collapses into dense sub-units, predicting L_HCN/L_CO(1-0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the L_HCN-L_CO relation (because SNe heat lower-density material, not the high-density gas). Changing the strength of radiation pressure (which acts efficiently in the highest density gas), however, has a much stronger effect on L_HCN than on L_CO. We predict that the fraction of dense gas (L_HCN/L_CO(1-0)) increases with increasing GMC surface density; this drives a trend in L_HCN/L_CO(1-0) with SFR and luminosity which has tentatively been observed. Our results make specific predictions for enhancements in the dense gas tracers in unusually dense environments such as ULIRGs and galactic nuclei (including the galactic center).
We present new Very Large Array 6cm H2CO observations toward four extragalactic radio continuum sources (B0212+735, 3C111, NRAO150, BL Lac) to explore the structure of foreground Galactic clouds as revealed by absorption variability. This project add s a new epoch in the monitoring observations of the sources reported by Marscher and collaborators in the mid 1990s. Our new observations confirm the monotonic increase in H$_2$CO absorption strength toward NRAO150. We do not detect significant variability of our 2009 spectra with respect to the 1994 spectra of 3C111, B0212+735 and BL Lac; however we find significant variability of the 3C111 2009 spectrum with respect to archive observations conducted in 1991 and 1992. Our analysis supports that changes in absorption lines could be caused by chemical and/or geometrical gradients in the foreground clouds, and not necessarily by small scale (~10 AU) high density molecular clumps within the clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا