ترغب بنشر مسار تعليمي؟ اضغط هنا

The Merger Environment of the WAT Hosting Cluster Abell 562

74   0   0.0 ( 0 )
 نشر من قبل Edmund Douglass
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a Chandra X-ray observation and VLA radio observations of the nearby (z=0.11) galaxy cluster Abell 562 and the wide angle tail (WAT) radio source 0647+693. The cluster displays signatures of an ongoing merger leading to the bending of the WAT source including an elongation of the X-ray surface brightness distribution along the line that bisects the WAT, an excess of displaced gas found between the radio lobes, and anisotropies within the ICM projected temperature and abundance distributions. The most likely geometry of the ongoing interaction is a head-on merger occurring along the WAT bending axis. By combining observable properties of A562 and 0647+693 with common values for the conditions within merging clusters at the time of core crossing, we constrain the internal density (rho[ j ] = 0.001 rho[ICM]) of the jets and plasma flow velocity within the lobes (v = 0.02c - 0.03c) of the WAT source.

قيم البحث

اقرأ أيضاً

We present a new study of the merger dynamics of Abell~1775 by analyzing the high-quality Chandra and XMM-Newton archival data. We confirm/identify an arc-shaped edge (i.e., the head) at $sim48$~kpc west of the X-ray peak, a split cold gas tail that extends eastward to $sim163$~kpc, and a plume of spiral-like X-ray excess (within about $81-324$~kpc northeast of the cluster core) that connects to the end of the tail. The head, across which the projected gas temperature rises outward from $3.39_{-0.18}^{+0.28}$~keV to $5.30_{-0.43}^{+0.54}$~keV, is found to be a cold front with a Mach number of $mathcal{M}sim0.79$. Along the surfaces of the cold front and tail, typical KHI features (noses and wings, etc.) are found and are used to constrain the upper limit of the magnetic field ($sim11.2~mu$G) and the viscosity suppression factor ($sim0.01$). Combining optical and radio evidence we propose a two-body merger (instead of systematic motion in a large-scale gas environment) scenario and have carried out idealized hydrodynamic simulations to verify it. We find that the observed X-ray emission and temperature distributions can be best reproduced with a merger mass ratio of 5 after the first pericentric passage. The NAT radio galaxy is thus more likely to be a single galaxy falling into the cluster center at a relative velocity of 2800~$rm km~s^{-1}$, a speed constrained by its radio morphology. The infalling subcluster is expected to have a relatively low gas content, because only a gas-poor subcluster can cause central-only disturbances as observed in such an off-axis merger.
We present results from Chandra and XMM-Newton observations of Abell 98 (A98), a galaxy cluster with three major components: a relatively bright subcluster to the north (A98N), a disturbed subcluster to the south (A98S), and a fainter subcluster to t he far south (A98SS). We find evidence for surface brightness and temperature asymmetries in A98N consistent with a shock-heated region to the south, which could be created by an early stage merger between A98N and A98S. Deeper observations are required to confirm this result. We also find that A98S has an asymmetric core temperature structure, likely due to a separate ongoing merger. Evidence for this is also seen in optical data. A98S hosts a wide-angle tail (WAT) radio source powered by a central active galactic nucleus (AGN). We find evidence for a cavity in the intracluster medium (ICM) that has been evacuated by one of the radio lobes, suggesting that AGN feedback is operating in this system. Examples of cavities in non-cool core clusters are relatively rare. The three subclusters lie along a line in projection, suggesting the presence of a large-scale filament. We observe emission along the filament between A98N and A98S, and a surface brightness profile shows emission consistent with the overlap of the subcluster extended gas haloes. We find the temperature of this region is consistent with the temperature of the gas at similar radii outside this bridge region. Lastly, we examine the cluster dynamics using optical data. We conclude A98N and A98S are likely bound to one another, with a 67% probability, while A98S and A98SS are not bound at a high level of significance.
We present a weak-lensing and dynamical study of the complex cluster Abell 1758 (A1758, z = 0.278) supported by hydrodynamical simulations. This cluster is composed of two main structures, called A1758N and A1758S. The Northern structure is composed of A1758NW & A1758NE, with lensing determined masses of 7.90_{-1.55}^{+1.89} X 10^{14} M_odot and 5.49_{-1.33}^{+1.67} X 10^{14} M_odot, respectively. They show a remarkable feature: while in A1758NW there is a spatial agreement among weak lensing mass distribution, intracluster medium and its brightest cluster galaxy (BCG) in A1758NE the X-ray peak is located 96_{-15}^{+14} arcsec away from the mass peak and BCG positions. Given the detachment between gas and mass we could use the local surface mass density to estimate an upper limit for the dark matter self-interaction cross section: sigma/m<5.83 cm^2 g^{-1}. Combining our velocity data with hydrodynamical simulations we have shown that A1758 NW & NE had their closest approach 0.27 Gyr ago and their merger axis is 21+-12 degrees from the plane of the sky. In the A1758S system we have measured a total mass of 4.96_{-1.19}^{+1.08} X 10^{14} M_odot and, using radial velocity data, we found that the main merger axis is located at 70+-4 degrees from the plane of the sky, therefore closest to the line-of-sight.
501 - J. Merten , D. Coe , R. Dupke 2011
We present a detailed strong lensing, weak lensing and X-ray analysis of Abell 2744 (z = 0.308), one of the most actively merging galaxy clusters known. It appears to have unleashed `dark, `ghost, `bullet and `stripped substructures, each ~10^14 sola r masses. The phenomenology is complex and will present a challenge for numerical simulations to reproduce. With new, multiband HST imaging, we identify 34 strongly-lensed images of 11 galaxies around the massive Southern `core. Combining this with weak lensing data from HST, VLT and Subaru, we produce the most detailed mass map of this cluster to date. We also perform an independent analysis of archival Chandra X-ray imaging. Our analyses support a recent claim that the Southern core and Northwestern substructure are post-merger and exhibit morphology similar to the Bullet Cluster viewed from an angle. From the separation between X-ray emitting gas and lensing mass in the Southern core, we derive a new and independent constraint on the self-interaction cross section of dark matter particles sigma/m <~ 3 pm 1 cm^2 g^-1. In the Northwestern substructure, the gas, dark matter, and galaxy components have become separated by much larger distances. Most curiously, the `ghost clump (primarily gas) leads the `dark clump (primarily dark matter) by more than 150 kpc. We propose an enhanced `ram-pressure slingshot scenario which may have yielded this reversal of components with such a large separation, but needs further confirmation by follow-up observations and numerical simulations. A secondary merger involves a second `bullet clump in the North and an extremely `stripped clump to the West. The latter appears to exhibit the largest separation between dark matter and X-ray emitting baryons detected to date in our sky.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا