ترغب بنشر مسار تعليمي؟ اضغط هنا

EPR entanglement strategies in two-well BEC

66   0   0.0 ( 0 )
 نشر من قبل Qiongyi He
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Criteria suitable for measuring entanglement between two different potential wells in a Bose- Einstein condensation (BEC) are evaluated. We show how to generate the required entanglement, utilizing either an adiabatic two-mode or dynamic four-mode interaction strategy, with techniques that take advantage of s-wave scattering interactions to provide the nonlinear coupling. The dynamic entanglement method results in an entanglement signature with spatially separated detectors, as in the Einstein-Podolsky-Rosen (EPR) paradox.

قيم البحث

اقرأ أيضاً

The generation and manipulation of strong entanglement and Einstein-Podolsky-Rosen (EPR) steering in macroscopic systems are outstanding challenges in modern physics. Especially, the observation of asymmetric EPR steering is important for both its fu ndamental role in interpreting the nature of quantum mechanics and its application as resource for the tasks where the levels of trust at different parties are highly asymmetric. Here, we study the entanglement and EPR steering between two macroscopic magnons in a hybrid ferrimagnet-light system. In the absence of light, the two types of magnons on the two sublattices can be entangled, but no quantum steering occurs when they are damped with the same rates. In the presence of the cavity field, the entanglement can be significantly enhanced, and strong two-way asymmetric quantum steering appears between two magnons with equal dispassion. This is very different from the conventional protocols to produce asymmetric steering by imposing additional unbalanced losses or noises on the two parties at the cost of reducing steerability. The essential physics is well understood by the unbalanced population of acoustic and optical magnons under the cooling effect of cavity photons. Our finding may provide a novel platform to manipulate the quantum steering and the detection of bi-party steering provides a knob to probe the magnetic damping on each sublattice of a magnet.
193 - D. Kaszlikowski , V. Vedral 2006
Coherent states with large amplitudes are traditionally thought of as the best quantum mechanical approximation of classical behavior. Here we argue that, far from being classical, coherent state are in fact highly entangled. We demonstrate this by s howing that a general system of indistinguishable bosons in a coherent state can be used to entangle, by local interactions, two spatially separated and distinguishable non-interacting quantum systems. Entanglement can also be extracted in the same way from number states or any other nontrivial superpositions of them.
We study entanglement and squeezing of two uncoupled impurities immersed in a Bose-Einstein condensate. We treat them as two quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. The Langevin-like quan tum stochastic equations derived exhibit memory effects. We study two scenarios: (i) In the absence of an external potential, we observe sudden death of entanglement; (ii) In the presence of an external harmonic potential, entanglement survives even at the asymptotic time limit. Our study considers experimentally tunable parameters.
The successful employment of high-dimensional quantum correlations and its integration in telecommunication infrastructures is vital in cutting-edge quantum technologies for increasing robustness and key generation rate. Position-momentum Einstein-Po dolsky-Rosen (EPR) entanglement of photon pairs are a promising resource of such high-dimensional quantum correlations. Here, we experimentally certify EPR correlations of photon pairs generated by spontaneous parametric down-conversion (SPDC) in a nonlinear crystal with type-0 phase-matching at telecom wavelength for the first time. To experimentally observe EPR entanglement, we perform scanning measurements in the near- and far-field planes of the signal and idler modes. We certify EPR correlations with high statistical significance of up to 45 standard deviations. Furthermore, we determine the entanglement of formation of our source to be greater than one, which gives evidence for the the high-dimensional entanglement between the photons. Operating at telecom wavelengths around 1550 nm, our source is compatible with todays deployed telecommunication infrastructure, thus paving the way for integrating sources of high-dimensional entanglement into quantum-communication infrastructures.
108 - N. Milazzo , D. Braun , O. Giraud 2019
With the advance of quantum information technology, the question of how to most efficiently test quantum circuits is becoming of increasing relevance. Here we introduce the statistics of lengths of measurement sequences that allows one to certify ent anglement across a given bi-partition of a multi-qubit system over the possible sequence of measurements of random unknown states, and identify the best measurement strategies in the sense of the (on average) shortest measurement sequence of (multi-qubit) Pauli measurements. The approach is based on the algorithm of truncated moment sequences that allows one to deal naturally with incomplete information, i.e. information that does not fully specify the quantum state. We find that the set of measurements corresponding to diagonal matrix elements of the moment matrix of the state are particularly efficient. For symmetric states their number grows only like the third power of the number $N$ of qubits. Their efficiency grows rapidly with $N$, leaving already for $N=4$ less than a fraction $10^{-6}$ of randomly chosen entangled states undetected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا