ﻻ يوجد ملخص باللغة العربية
In this work we show that from the spectrum of particles of a 3-3-1 gauge model with heavy sterile neutrinos we can have up to three Cold Dark Matter candidates as WIMPs. We obtain their relic abundance and analyze their compatibility with recent direct detection experiments, exploring the possibility of explaining the two events reported by CDMS-II. An interesting outcome of this 3-3-1 model, concerning direct detection of two WIMPs in the model, is a strong bound on the symmetry breaking scale, which imposes it to be above 3 TeV.
We consider the minimal 3-3-1 model with three sterile neutrinos transforming as singlet under the $SU(3)_Lotimes U(1)_X$ symmetry. This model, with or without sterile neutrinos, predicts flavor violating interactions in both quark and lepton sectors
We present the first multiscalar singlet extension of the 3-3-1 model with right-handed neutrinos, based on the $Delta left( 27right) $ family symmetry, supplemented by the $Z_{4}otimes Z_{8}otimes Z_{14}$ flavor group, consistent with current low en
We consider the minimal 3-3-1 model with a heavy scalar sextet and realize, at the tree level, an effective dimension-five interaction that contributes to the mass of the charged leptons. In this case the charged leptons masses arise from a sort of t
We calculate the electric dipole moment for the electron and neutron in the framework of the 3-3-1 model with heavy charged leptons. We assume that the only source of $CP$ violation arises from a complex trilinear coupling constant and the three comp
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard