ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

100   0   0.0 ( 0 )
 نشر من قبل Warren Huelsnitz Warren Huelsnitz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrinos direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.



قيم البحث

اقرأ أيضاً

120 - Donglian Xu 2017
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino flux. While the flux is consistent with all flavors of neutrinos being present, identification of tau neutrinos within the flux is yet to occur. Although tau neutrino production is thought to be low at the source, an equal fraction of neutrinos are expected at Earth due to averaged neutrino oscillations over astronomical distances. Above a few hundred TeV, tau neutrinos become resolvable in IceCube with negligible background from cosmic-ray induced atmospheric neutrinos. Identification of tau neutrinos within the observed flux is crucial to precise measurement of its flavor content, which could serve to test fundamental neutrino properties over extremely long baselines, and possibly shed light on new physics beyond the Standard Model. We present the analysis method and results from a recent search for astrophysical tau neutrinos in three years of IceCube data.
The first dedicated search for ultra-high energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25 km^3. The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60 +/- 0.19 (stat.) $^{+0.56}_{-0.58}$ (syst.) events and observe three events, which after inspection emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all-flavors from UHE astrophysical sources at 90% CL of $E^{2} Phi( u_{x}) < 16.3 * 10^-8 GeV cm^-2 sr^-1 s^-1 over an estimated primary neutrino energy range of 340 TeV to 200 PeV.
225 - Anne Schukraft 2013
Atmospheric neutrinos are produced in air showers, when cosmic ray primaries hit the Earths atmosphere and interact hadronically. The conventional neutrino flux, which dominates the neutrino data measured in the GeV to TeV range by neutrino telescope s, is produced by the decay of charged pions and kaons. Prompt atmospheric neutrinos are produced by the decay of heavier mesons typically containing a charm quark. Their production is strongly suppressed, but they are expected to exhibit a harder energy spectrum. Hence, they could dominate the atmospheric neutrino flux at energies above ~ 100 TeV. Such a prompt atmospheric flux component has not yet been observed. Therefore, it is an interesting signal in a diffuse neutrino search, but also a background in the search for a diffuse astrophysical neutrino flux. The sensitivity of diffuse neutrino searches with the IceCube Neutrino observatory has reached the level of theoretical expectations of prompt neutrino fluxes, and recent results are presented.
High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV s hould be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^pm$, $D^0$, $bar{D}{}^0$, $D_s^pm$, $Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range $10-10^7$ GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.
We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of $8.3pm 3.6$. At 90% confidence we set an upper limit of $E^2Phi_{90%CL}<3.6times10^{-7} GeV cdot cm^{-2} cdot s^{-1}cdot sr^{-1} $ on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that $Phi propto E^{-2}$ and that the flavor composition of the $ u_e : u_mu : u_tau$ flux is $1 : 1 : 1$ at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا