ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy water around the L1448-mm protostar

154   0   0.0 ( 0 )
 نشر من قبل Claudio Codella
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: L1448-mm is the prototype of a low-mass Class 0 protostar driving a high-velocity jet. Given its bright H2O spectra observed with ISO, L1448-mm is an ideal laboratory to observe heavy water (HDO) emission. Aims: Our aim is to image the HDO emission in the protostar surroundings, the possible occurrence of HDO emission also investigating off L1448-mm, towards the molecular outflow. Methods: We carried out observations of L1448-mm in the HDO(1_10-1_11) line at 80.6 GHz, an excellent tracer of HDO column density, with the IRAM Plateau de Bure Interferometer. Results: We image for the first time HDO emission around L1448-mm. The HDO structure reveals a main clump at velocities close to the ambient one towards the the continuum peak that is caused by the dust heated by the protostar. In addition, the HDO map shows tentative weaker emission at about 2000 AU from the protostar towards the south, which is possibly associated with the walls of the outflow cavity opened by the protostellar wind. Conclusions: Using an LVG code, modelling the density and temperature profile of the hot-corino, and adopting a gas temperature of 100 K and a density of 1.5 10^8 cm^-3, we derive a beam diluted HDO column density of about 7 10^13 cm^-2, corresponding to a HDO abundance of about 4 10^-7. In addition, the present map supports the scenario where HDO can be efficiently produced in shocked regions and not uniquely in hot corinos heated by the newly born star.



قيم البحث

اقرأ أيضاً

Spectral line survey observations are conducted toward the high-mass protostar candidate NGC 2264 CMM3 in the 4 mm, 3 mm, and 0.8 mm bands with the Nobeyama 45 m telescope and the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. In t otal, 265 emission lines are detected in the 4 mm and 3 mm bands, and 74 emission lines in the 0.8 mm band. As a result, 36 molecular species and 30 isotopologues are identified. In addition to the fundamental molecular species, many emission lines of carbon-chain molecules such as HC5N, C4H, CCS, and C3S are detected in the 4 mm and 3 mm bands. Deuterated molecular species are also detected with relatively strong intensities. On the other hand, emission lines of complex organic molecules such as HCOOCH3, and CH3OCH3 are found to be weak. For the molecules for which multiple transitions are detected, rotation temperatures are derived to be 7-33 K except for CH3OH. Emission lines with high upper-state energies (Eu > 150 K) are detected for CH3OH, indicating existence of a hot core. In comparison with the chemical composition of the Orion KL, carbon-chain molecules and deuterated molecules are found to be abundant in NGC 2264 CMM3, while sulfur-bearing species and complex organic molecules are deficient. These characteristics indicate chemical youth of NGC 2264 CMM3 in spite of its location at the center of the cluster forming core, NGC 2264 C.
Although deuterium enrichment of water may provide an essential piece of information in the understanding of the formation of comets and protoplanetary systems, only a few studies up to now have aimed at deriving the HDO/H2O ratio in low-mass star fo rming regions. Previous studies of the molecular deuteration toward the solar-type class 0 protostar, IRAS 16293-2422, have shown that the D/H ratio of water is significantly lower than other grain-surface-formed molecules. It is not clear if this property is general or particular to this source. In order to see if the results toward IRAS 16293-2422 are particular, we aimed at studying water deuterium fractionation in a second low-mass solar-type protostar, NGC1333-IRAS2A. Using the 1-D radiative transfer code RATRAN, we analyzed five HDO transitions observed with the IRAM 30m, JCMT, and APEX telescopes. We assumed that the abundance profile of HDO in the envelope is a step function, with two different values in the inner warm (T>100 K) and outer cold (T<100 K) regions of the protostellar envelope. The inner and outer abundance of HDO is found to be well constrained at the 3 sigma level. The obtained HDO inner and outer fractional abundances are x_in=6.6e-8 - 1e-7 and x_out=9e-11 - 1.8e-9 (3 sigma). These values are close to those in IRAS 16293-2422, which suggests that HDO may be formed by the same mechanisms in these two solar-type protostars. Taking into account the (rather poorly constrained) H2O abundance profile deduced from Herschel observations, the derived HDO/H2O in the inner envelope is larger than 1% and in the outer envelope it is 0.9%-18%. These values are more than one order of magnitude higher than what is measured in comets. If the same ratios apply to the protosolar nebula, this would imply that there is some efficient reprocessing of the material between the protostellar and cometary phases. The H2O inner fractional [...]
The recent detection of shock-precursors toward the very young L1448-mm outflow offers us the possibility to study the grain chemistry during the first stages of the shock evolution, constraining the molecules ejected from grains and the species form ed in gas phase. Observations of key molecules in the grain chemistry such as SiO, CH3OH, SO, CS, H2S, OCS, and SO2 toward this outflow are presented. The line profiles and the derived abundances show three distinct velocity regimes that trace the shock evolution: the preshock, the shock-precursor and the postshock gas. The SiO, CH3OH, SO, and CS abundances are enhanced with respect to the quiescent gas by 1 order of magnitude in the shock-precursor component, and by 3 orders of magnitude in the postshock gas. The derived SiO and CH3OH abundances are consistent with the recent ejection of these molecules from grains. Since H2S is only enhanced in the shock-precursor component, and OCS and SO2 are undetected, SO and CS are the most abundant sulfur-bearing species in the grain mantles of L1448-mm. The ejection of mainly SO and CS rather than H2S or OCS from grains, suggests that the sulfur chemistry will depend on the chemical history of the grain mantles in outflows and hot cores.
194 - John J. Tobin 2013
We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at 870 micron and 3.4 mm from the Submillimeter Array (SMA) and Combined Array for Research in Millimeter Astronomy (CARMA). We det ect the signature of an edge-on disk surrounding the protostar with an observed diameter of 180 AU in the sub/millimeter images. The mass of the disk is estimated to be 0.007 M_sun, assuming optically thin, isothermal dust emission. The millimeter spectral index is observed to be quite shallow at all the spatial scales probed; alpha ~ 2, implying a dust opacity spectral index beta ~ 0. We model the emission from the disk and surrounding envelope using Monte Carlo radiative transfer codes, simultaneously fitting the sub/millimeter visibility amplitudes, sub/millimeter images, resolved Larcmin image, spectral energy distribution, and mid-infrared spectrum. The best fitting model has a disk radius of R = 125 AU, is highly flared (H ~ R^1.3), has a radial density profile rho ~ R^-2.5, and has a mass of 0.0075 M_sun. The scale height at 100 AU is 48 AU, about a factor of two greater than vertical hydrostatic equilibrium. The resolved millimeter observations indicate that disks may grow rapidly throughout the Class 0 phase. The mass and radius of the young disk around L1527 is comparable to disks around pre-main sequence stars; however, the disk is considerably more vertically extended, possibly due to a combination of lower protostellar mass, infall onto the disk upper layers, and little settling of ~1 micron-sized dust grains.
The detection of narrow SiO thermal emission toward young outflows has been proposed to be a signature of the magnetic precursor of C-shocks. Recent modeling of the SiO emission across C-shocks predicts variations in the SiO line intensity and line s hape at the precursor and intermediate-velocity regimes in only few years. We present high-angular resolution (3.8x3.3) images of the thermal SiO J=2-1 emission toward the L1448-mm outflow in two epochs (November 2004-February 2005, March-April 2009). Several SiO condensations have appeared at intermediate velocities (20-50 km/s) toward the red-shifted lobe of the outflow since 2005. Toward one of the condensations (clump D), systematic differences of the dirty beams between 2005 and 2009 could be responsible for the SiO variability. At higher velocities (50-80 km/s), SiO could also have experienced changes in its intensity. We propose that the SiO variability toward L1448-mm is due to a real SiO enhancement by young C-shocks at the internal working surface between the jet and the ambient gas. For the precursor regime (5.2-9.2 km/s), several narrow and faint SiO components are detected. Narrow SiO tends to be compact, transient and shows elongated (bow-shock) morphologies perpendicular to the jet. We speculate that these features are associated with the precursor of C-shocks appearing at the interface of the new SiO components seen at intermediate velocities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا