ترغب بنشر مسار تعليمي؟ اضغط هنا

New results on planetary nebula shaping and stellar binarity

84   0   0.0 ( 0 )
 نشر من قبل Orsola De Marco
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Orsola De Marco




اسأل ChatGPT حول البحث

The question of what physical mechanisms shape planetary nebulae into their observed morphologies remains open. However, intensified efforts since the last meeting in this series, Asymmetrical Planetary Nebulae IV, in July 2007 have yielded some excellent results. In this review we concentrate on those developments that have taken place in the last three years, with emphasis on results obtained since the review by De Marco (2009).



قيم البحث

اقرأ أيضاً

We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evoluti on of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrowband imaging in the light of [NII], [OIII] and [SII], obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionisation structure of Abell 41. Longslit observations of the H-alpha and [NII] emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Martir Telescope. These spectra, combined with the narrowband imagery, were used to develop a spatio-kinematical model of [NII] emission from Abell 41. The best fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40kms at the waist. The symmetry axis of the model nebula is within 5$degr$ of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.
A current issue in the study of planetary nebulae with close binary central stars is the extent to which the binaries affect the shaping of the nebulae. Recent studies have begun to show a high coincidence rate between nebulae with large-scale axial or point symmetries and close binary stars. In addition, combined binary-star and spatio-kinematic modeling of the nebulae have demonstrated that all of the systems studied to date appear to have their central binary axis aligned with the primary axis of the nebula. Here we add two more systems to the list, the central stars and nebulae of NGC 6337 and Sp 1. We show both systems to be low inclination, with their binary axis nearly aligned with our line-of-sight. Their inclinations match published values for the inclinations of their surrounding nebulae. Including these two systems with the existing sample statistically demonstrates a direct link between the central binary and the nebular morphology. In addition to the systems inclinations we give ranges for other orbital parameters from binary modeling, including updated orbital periods for the binary central stars of NGC 6337 and Sp 1.
141 - A. A. Tyndall 2012
We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula HaTr 4, one of few known to contain a post-common-envelope central star system. Common envelope evolution is believed to play an important role in the sha ping of planetary nebulae, but the exact nature of this role is yet to be understood. High spatial- and spectral- resolution spectroscopy of the [OIII]5007 nebular line obtained with VLT-UVES are presented alongside deep narrowband Ha+[NII]6584 imagery obtained using EMMI-NTT, and together the two are used to derive the three-dimensional morphology of HaTr 4. The nebula is found to display an extended ovoid morphology with an enhanced equatorial region consistent with a toroidal waist - a feature believed to be typical amongst planetary nebulae with post-common-envelope central stars. The nebular symmetry axis is found to lie perpendicular to the orbital plane of the central binary, concordant with the idea that the formation and evolution of HaTr 4 has been strongly influenced by its central binary.
140 - David Jones 2011
The role of central star binarity in the shaping of planetary nebulae (PNe) has been the subject of much debate, with single stars believed to be incapable of producing the most highly collimated morphologies. However, observational support for binar y-induced shaping has been sadly lacking. Here, we highlight the results of a continuing programme to spatio-kinematically model the morphologies of all PNe known to contain a close binary central star. Spatio-kinematical modelling is imperative for these objects, as it circumvents the degeneracy between morphology and orientation which can adversely affect determinations of morphology based on imaging alone. Furthermore, spatio-kinematical modelling accurately determines the orientation of the nebular shell, allowing the theoretically predicted perpendicular alignment, between nebular symmetry axis and binary orbital plane, to be tested. To date, every PN subjected to this investigation has displayed the predicted alignment, indicating that binarity has played an important role in the formation and evolution of these nebulae. The further results from this programme will be key, not only in determining whether binary interaction is responsible for shaping the studied PNe, but also in assessing the importance of binarity in the formation and evolution of all PNe in general.
Planetary nebulae retain the signature of the nucleosynthesis and mixing events that occurred during the previous AGB phase. Observational signatures complement observations of AGB and post-AGB stars and their binary companions. The abundances of the elements heavier than iron such as Kr and Xe in planetary nebulae can be used to complement abundances of Sr/Y/Zr and Ba/La/Ce in AGB stars, respectively, to determine the operation of the slow neutron-capture process (the s process) in AGB stars. Additionally, observations of the Rb abundance in Type I planetary nebulae may allow us to infer the initial mass of the central star. Several noble gas components present in meteoritic stardust silicon carbide (SiC) grains are associated with implantation into the dust grains in the high-energy environment connected to the fast winds from the central stars during the planetary nebulae phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا