ترغب بنشر مسار تعليمي؟ اضغط هنا

The Supernova Impostor Impostor SN 1961V: Spitzer Shows That Zwicky Was Right (Again)

475   0   0.0 ( 0 )
 نشر من قبل Christopher S. Kochanek
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SN 1961V, one of Zwickys defining Type V supernovae (SN), was a peculiar transient in NGC 1058 that has variously been categorized as either a true core collapse SN leaving a black hole (BH) or neutron star (NS) remnant, or an eruption of a luminous blue variable (LBV) star. The former case is suggested by its association with a decaying non-thermal radio source, while the latter is suggested by its peculiar transient light curve and its low initial expansion velocities. The crucial difference is that the star survives a transient eruption but not an SN. All stars identified as possible survivors are significantly fainter, L_opt ~ 10^5 Lsun, than the L_opt ~ 3 10^6 Lsun progenitor star at optical wavelengths. While this can be explained by dust absorption in a shell of material ejected during the transient, the survivor must then be present as a L_IR ~ 3 10^6 Lsun mid-infrared source. Using archival Spitzer observations of the region, we show that such a luminous mid-IR source is not present. The brightest source of dust emission is only L_IR ~ 10^5 Lsun and does not correspond to the previously identified candidates for the surviving star. The dust cannot be made sufficiently distant and cold to avoid detection unless the ejection energy, mass and velocity scales are those of a SN or greater. We conclude that SN 1961V was a peculiar, but real, supernova. Its peculiarities are probably due to enhanced mass loss just prior to the SN, followed by the interactions of the SN blast wave with this ejecta. This adds to the evidence that there is a population of SN progenitors that have major mass loss episodes shortly before core collapse. The progenitor is a low metallicity, ~1/3 solar, high mass, M_ZAMS > 80 Msun, star, which means either that BH formation can be accompanied by an SN or that surprisingly high mass stars can form a NS.



قيم البحث

اقرأ أيضاً

Reports of the death of the precursor of Supernova (SN) 1961V in NGC 1058 are exaggerated. Consideration of the best astrometric data shows that the star, known as Object 7, lies at the greatest proximity to SN 1961V and is the likely survivor of the SN impostor super-outburst. SN 1961V does not coincide with a neighboring radio source and is therefore not a radio SN. Additionally, the current properties of Object 7, based on data obtained with the Hubble Space Telescope, are consistent with it being a quiescent Luminous Blue Variable (LBV). Furthermore, post-explosion non-detections by the Spitzer Space Telescope do not necessarily and sufficiently rule out a surviving LBV. We therefore consider, based on the available evidence, that it is yet a bit premature to reclassify SN 1961V as a bona fide SN. The inevitable demise of this star, though, may not be too far off.
359 - Noam Soker 2012
We propose that the energetic major outburst of the supernova (SN) impostor SN 2009ip in September 2012 (outburst 2012b) was a mergerburst event, where two massive stars merged. The previous outbursts of 2009 and 2011 might have occurred near periast ron passages of the binary system prior to the merger, in a similar manner to the luminosity peaks in the nineteenth century Great Eruption of the massive binary system Eta Carinae. The major 2012b outburst and the 2012a pre-outburst, resemble the light curve of the mergerburst event V838 Mon. A merger of an evolved star with a mass of M1~60-100Mo and a secondary main sequence star of M2~0.2-0.5M1 can account for the energy of SN 2009ip and for the high velocities of the ejected gas. The ejected nebula is expected to have a non-spherical structure, e.g. bipolar or even a more complicated morphology.
We report the results of our follow-up campaign of the supernova impostor PSN J09132750+7627410, based on optical data covering $sim250,rm{d}$. From the beginning, the transient shows prominent narrow Balmer lines with P-Cygni profiles, with a blue-s hifted absorption component becoming more prominent with time. Along the $sim3,rm{months}$ of the spectroscopic monitoring, broad components are never detected in the hydrogen lines, suggesting that these features are produced in slowly expanding material. The transient reaches an absolute magnitude $M_r=-13.60pm0.19,rm{mag}$ at maximum, a typical luminosity for supernova impostors. Amateur astronomers provided $sim4,rm{years}$ of archival observations of the host galaxy, NGC 2748. The detection of the quiescent progenitor star in archival images obtained with the Hubble Space Telescope suggests it to be an $18-20$msun white-yellow supergiant.
We present visual-wavelength photometry and spectroscopy of supernova SN2008S. Based on the low peak luminosity for a SN of M_R = -13.9 mag, photometric and spectral evolution unlike that of low-luminosity SNe, a late-time decline rate slower than 56 Co decay, and slow outflow speeds of 600-1000 km/s, we conclude that SN2008S is not a true core-collapse SN and is probably not an electron-capture SN. Instead, we show that SN2008S more closely resembles a SN impostor event like SN1997bs, analogous to the giant eruptions of LBVs. Its total radiated energy was 1e47.8 ergs, and it may have ejected 0.05-0.2 Msun in the event. We discover an uncanny similarity between the spectrum of SN 2008S and that of the Galactic hypergiant IRC+10420, which is dominated by narrow H-alpha, [Ca II], and Ca II emission lines formed in an opaque wind. We propose a scenario where the vastly super-Eddington wind of SN2008S partly fails because of reduced opacity due to recombination, as suggested for IRC+10420. The range of initial masses susceptible to eruptive LBV-like mass loss was known to extend down to 20-25 Msun, but estimates for the progenitor of SN2008S (and the similar NGC300 transient) may extend this range to around 15 Msun. As such, SN2008S may have implications for the progenitor of SN1987A.
We present multi-epoch mid-infrared (IR) photometry and the optical discovery observations of the impostor supernova (SN) 2010da in NGC 300 using new and archival Spitzer Space Telescope images and ground-based observatories. The mid-IR counterpart o f SN 2010da was detected as SPIRITS 14bme in the SPitzer InfraRed Intensive Transient Survey (SPIRITS), an ongoing systematic search for IR transients. A sharp increase in the 3.6 $mu$m flux followed by a rapid decrease measured ~150 d before and ~80 d after the initial outburst, respectively, reveal a mid-IR counterpart to the coincident optical and high luminosity X-ray outbursts. At late times after the outburst (~2000 d), the 3.6 and 4.5 $mu$m emission increased to over a factor of 2 times the progenitor flux. We attribute the re-brightening mid-IR emission to continued dust production and increasing luminosity of the surviving system associated with SN 2010da. We analyze the evolution of the dust temperature, mass, luminosity, and equilibrium temperature radius in order to resolve the nature of SN 2010da. We address the leading interpretation of SN 2010da as an eruption from a luminous blue variable (LBV) high-mass X-ray binary (HMXB) system. We propose that SN 2010da is instead a supergiant (sg)B[e]-HMXB based on similar luminosities and dust masses exhibited by two other known sgB[e]-HMXB systems. Additionally, the SN 2010da progenitor occupies a similar region on a mid-IR color-magnitude diagram (CMD) with known sgB[e] stars in the Large Magellanic Cloud. The lower limit estimated for the orbital eccentricity of the sgB[e]-HMXB (e>0.82) from X-ray luminosity measurements is high compared to known sgHMXBs and supports the claim that SN 2010da may be associated with a newly formed HMXB system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا