ﻻ يوجد ملخص باللغة العربية
An efficient separation between dwarfs and giants in surveys of bright stars is important, especially for studies in which distances are estimated through photometric parallax relations. We use the available spectroscopic log g estimates from the second RAVE data release (DR2) to assign each star a probability for being a dwarf or subgiant/giant based on mixture model fits to the log g distribution in different color bins. We further attempt to use these stars as a labeled training set in order to classify stars which lack log g estimates into dwarfs and giants with a SVM algorithm. We assess the performance of this classification against different choices of the input feature vector. In particular, we use different combinations of reduced proper motions, 2MASS JHK, DENIS IJK and USNO-B B2R2 apparent magnitudes. Our study shows that -- for our color ranges -- the infrared bands alone provide no relevant information to separate dwarfs and giants. Even when optical bands and reduced proper motions are added, the fraction of true giants classified as dwarfs (the contamination) remains above 20%. Using only the dwarfs with available spectroscopic log g and distance estimates (the latter from Breddels et al. 2010), we then repeat the stream search by Klement, Fuchs & Rix (2008, KFR08), which assumed all stars were dwarfs and claimed the discovery of a new stellar stream at V = -160 km/s in a sample of 7015 stars from RAVE DR1. Our re-analysis of the pure DR2 dwarf sample exhibits an overdensity of 5 stars at the phase-space position of the KFR08 stream, with a metallicity distribution that appears inconsistent with that of stars at comparably low rotational velocities. Compared to several smooth Milky Way models, the mean standardized deviation of the KFR08 stream is only marginal at 1.6$pm$0.4... (abbreviated)
We identify a new, nearby (0.5 < d < 10 kpc) stream in data from the RAdial Velocity Experiment (RAVE). As the majority of stars in the stream lie in the constellation of Aquarius we name it the Aquarius Stream. We identify 15 members of the stream l
The local velocity distribution of dark matter plays an integral role in interpreting the results from direct detection experiments. We previously showed that metal-poor halo stars serve as excellent tracers of the virialized dark matter velocity dis
We present a new spectroscopic technique based in part on targeting the upward fluctuations of the surface brightness for studying the internal stellar kinematics and metallicities of low surface brightness galaxies and streams beyond the Local Group
We present a new fully data-driven algorithm that uses photometric data from the Canada-France-Imaging-Survey (CFIS; $u$), Pan-STARRS 1 (PS1; $griz$), and Gaia ($G$) to discriminate between dwarf and giant stars and to estimate their distances and me
We present results from an extensive spectroscopic survey of field stars in the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red giants, spread across roughly 37.5 sq. deg, are analysed. The line of sight velocity field is d