ﻻ يوجد ملخص باللغة العربية
We define and give explicit construction of the universal tree-graded space with a given collection of pieces. We apply that to proving uniqueness of asymptotic cones of relatively hyperbolic groups whose peripheral subgroups have unique asymptotic cones. Modulo the Continuum Hypothesis, we show that if an asymptotic cone of a geodesic metric space is homogeneous and has cut points, then it is the universal tree-graded space with pieces - maximal connected subsets without their own cut points. Thus it is completely determined by its collection of pieces.
We construct a finitely presented group with infinitely many non-homeomorphic asymptotic cones. We also show that the existence of cut points in asymptotic cones of finitely presented groups does, in general, depend on the choice of scaling constants and ultrafilters.
We show how a recent result of Hrushovsky implies that if an asymptotic cone of a finitely generated group is locally compact, then the group is virtually nilpotent.
We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim{a}r. In
Given a geodesic inside a simply-connected, complete, non-positively curved Riemannian (NPCR) manifold M, we get an associated geodesic inside the asymptotic cone Cone(M). Under mild hypotheses, we show that if the latter is contained inside a bi-Lip
The purpose of this erratum is to correct the proof of Theorem A.0.1 in the appendix to our article ``Hadamard spaces with isolated flats math.GR/0411232, which was jointly authored by Mohamad Hindawi, Hruska and Kleiner. In that appendix, many of th