ﻻ يوجد ملخص باللغة العربية
When galaxy clusters collide, they generate shock fronts in the hot intracluster medium. Observations of these shocks can provide valuable information on the merger dynamics and physical conditions in the cluster plasma, and even help constrain the nature of dark matter. To study shock fronts, one needs an X-ray telescope with high angular resolution (such as Chandra), and be lucky to see the merger from the right angle and at the right moment. As of this writing, only a handful of merger shock fronts have been discovered and confirmed using both X-ray imaging and gas temperature data -- those in 1E0657-56, A520, A754, and two fronts in A2146. A few more are probable shocks awaiting temperature profile confirmation -- those in A521, RXJ1314-25, A3667, A2744, and Coma. The highest Mach number is 3 in 1E0657-56, while the rest has M=1.6-2. Interestingly, all these relatively weak X-ray shocks coincide with sharp edges in their host clusters synchrotron radio halos (except in A3667, where it coincides with the distinct radio relic, and A2146, which does not have radio data yet). This is contrary to the common wisdom that weak shocks are inefficient particle accelerators, and may shed light on the mechanisms of relativistic electron production in astrophysical plasmas.
We investigate the symbiotic star BI Crucis through a comprehensive and self-consistent analysis of the spectra emitted in three different epochs: 60s, 70s, and late 80s. In particular, we would like to find out the physical conditions in the shocked
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry
We present a new Chandra X-ray observation of the off-axis galaxy group merger RXJ0751.3+5012. The hot atmospheres of the two colliding groups appear highly distorted by the merger. The images reveal arc-like cold fronts around each group core, produ
We present a new Chandra observation of the galaxy cluster Abell 2146 which has revealed a complex merging system with a gas structure that is remarkably similar to the Bullet cluster (eg. Markevitch et al. 2002). The X-ray image and temperature map
Cold fronts -- contact discontinuities in the intracluster medium (ICM) of galaxy clusters -- should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This ope