ﻻ يوجد ملخص باللغة العربية
Hot-Jupiter planets must form at large separations from their host stars where the temperatures are cool enough for their cores to condense. They then migrate inwards to their current observed orbital separations. Different theories of how this migration occurs lead to varying distributions of orbital eccentricity and the alignment between the rotation axis of the star and the orbital axis of the planet. The spin-orbit alignment of a transiting system is revealed via the Rossiter-McLaughlin effect, which is the anomaly present in the radial velocity measurements of the rotating star during transit due to the planet blocking some of the starlight. In this paper we aim to measure the spin-orbit alignment of the WASP-3 system via a new way of analysing the Rossiter-McLaughlin observations. We apply a new tomographic method for analysing the time variable asymmetry of stellar line profiles caused by the Rossiter-McLaughlin effect. This new method eliminates the systematic error inherent in previous methods used to analyse the effect. We find a value for the projected stellar spin rate of v sin i = 13.9 pm 0.03 km/s which is in agreement with previous measurements but has a much higher precision. The system is found to be well aligned which favours an evolutionary history for WASP-3b involving migration through tidal interactions with a protoplanetary disc. Using gyrochronology we estimate the age of the star to be ~300 Myr with an upper limit of 2 Gyr from comparison with isochrones.
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The shape of the ef
We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis ($lambda$). WASP-13b and WASP-32b both have prograde orbits and are con
We present new measurements of the Rossiter-McLaughlin (RM) effect for three WASP planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis of their complete sets of photometric and spectroscopic data. We find a low amplitude RM effec
We present Rossiter-McLaughlin observations of the transiting super-Earth 55 Cnc e collected during six transit events between January 2012 and November 2013 with HARPS and HARPS-N. We detect no radial-velocity signal above 35 cm/s (3-sigma) and conf
We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars rotation axes. The planets WASP-24