ترغب بنشر مسار تعليمي؟ اضغط هنا

Asteroseismic modelling of the metal-poor star Tau Ceti

188   0   0.0 ( 0 )
 نشر من قبل Yanke Tang
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Asteroseismology is an effcient tool not only for testing stellar structure and evolutionary theory but also constraining the parameters of stars for which solar-like oscillations are detected, presently. As an important southern asteroseismic target, Tau Ceti, is a metal-poor star. The main features of the oscillations and some frequencies of ? Ceti have been identified. Many scientists propose to comprehensively observe this star as part of the Stellar Observations Network Group. Aims. Our goal is to obtain the optimal model and reliable fundamental parameters for the metal-poor star Tau Ceti by combining all non-asteroseismic observations with these seismological data. Methods. Using the Yale stellar evolution code (YREC), a grid of stellar model candidates that fall within all the error boxes in the HR diagram have been constructed, and both the model frequencies and large- and small- frequency separations are calculated using the Guenthers stellar pulsation code. The chi2c minimization is performed to identify the optimal modelling parameters that reproduce the observations within their errors. The frequency corrections of near-surface effects to the calculated frequencies using the empirical law, as proposed by Kjeldsen and coworkers, are applied to the models. Results. We derive optimal models, corresponding to masses of about 0.775 - 0.785 M? and ages of about 8 - 10 Gyr. Furthermore, we find that the quantities derived from the non-asteroseismic observations (effective temperature and luminosity) acquired spectroscopically are more accurate than those inferred from interferometry for ? Ceti, because our optimal models are in the error boxes B and C, which are derived from spectroscopy results.



قيم البحث

اقرأ أيضاً

Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation fr equency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (<{Delta}M>=0.17+/-0.05 Msun) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 Msun level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ~100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.
The detection and analysis of oscillations in binary star systems is critical in understanding stellar structure and evolution. This is partly because such systems have the same initial chemical composition and age. Solar-like oscillations have been detected by Kepler in both components of the asteroseismic binary HD 176465. We present an independent modelling of each star in this binary system. Stellar models generated using MESA (Modules for Experiments in Stellar Astrophysics) were fitted to both the observed individual frequencies and complementary spectroscopic parameters. The individual theoretical oscillation frequencies for the corresponding stellar models were obtained using GYRE as the pulsation code. A Bayesian approach was applied to find the probability distribution functions of the stellar parameters using AIMS (Asteroseismic Inference on a Massive Scale) as the optimisation code. The ages of HD 176465 A and HD 176465 B were found to be 2.81 $pm$ 0.48 Gyr and 2.52 $pm$ 0.80 Gyr, respectively. These results are in agreement when compared to previous studies carried out using other asteroseismic modelling techniques and gyrochronology.
We present 1.3 mm observations of the Sun-like star $tau$ Ceti with the Atacama Large Millimeter/submillimeter Array (ALMA) that probe angular scales of $sim1$ (4 AU). This first interferometric image of the $tau$ Ceti system, which hosts both a debr is disk and possible multiplanet system, shows emission from a nearly face-on belt of cold dust with a position angle of $90^circ$ surrounding an unresolved central source at the stellar position. To characterize this emission structure, we fit parametric models to the millimeter visibilities. The resulting best-fit model yields an inner belt edge of $6.2^{+9.8}_{-4.6}$ AU, consistent with inferences from lower resolution, far-infrared Herschel observations. While the limited data at sufficiently short baselines preclude us from placing stronger constraints on the belt properties and its relation to the proposed five planet system, the observations do provide a strong lower limit on the fractional width of the belt, $Delta R/R > 0.75$ with $99%$ confidence. This fractional width is more similar to broad disks such as HD 107146 than narrow belts such as the Kuiper Belt and Fomalhaut. The unresolved central source has a higher flux density than the predicted flux of the stellar photosphere at 1.3 mm. Given previous measurements of an excess by a factor of $sim2$ at 8.7 mm, this emission is likely due to a hot stellar chromosphere.
The stellar population in the Galactic halo is characterised by a large fraction of CEMP stars. Most CEMP stars are enriched in $s$-elements (CEMP-$s$ stars), and some of these are also enriched in $r$-elements (CEMP-$s/r$ stars). One formation scena rio proposed for CEMP stars invokes wind mass transfer in the past from a TP-AGB primary star to a less massive companion star which is presently observed. We generate low-metallicity populations of binary stars to reproduce the observed CEMP-star fraction. In addition, we aim to constrain our wind mass-transfer model and investigate under which conditions our synthetic populations reproduce observed abundance distributions. We compare the CEMP fractions and the abundance distributions determined from our synthetic populations with observations. Several physical parameters of the binary stellar population of the halo are uncertain, e.g. the initial mass function, the mass-ratio and orbital-period distributions, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population. The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The results of our comparison between the modelled and observed abundance distributions are different for CEMP-$s/r$ stars and for CEMP-$s$ stars. For the latter, our simulations qualitatively reproduce the observed distributions of C, Na, Sr, Ba, Eu, and Pb. Contrarily, for CEMP-$s/r$ stars our model cannot reproduce the large abundances of neutron-rich elements such as Ba, Eu, and Pb. This result is consistent with previous studies, and suggests that CEMP-$s/r$ stars experienced a different nucleosynthesis history to CEMP-$s$ stars.
It is unknown whether or not low-mass stars can form at low metallicity. While theoretical simulations of Population III (Pop III) star formation show that protostellar disks can fragment, it is impossible for those simulations to discern if those fr agments survive as low-mass stars. We report the discovery of a low-mass star on a circular orbit with orbital period P = 34.757 +/- 0.010 days in the ultra metal-poor (UMP) single-lined spectroscopic binary system 2MASS J18082002--5104378. The secondary star 2MASS J18082002--5104378 B has a mass M_2 = 0.14_{-0.01}^{+0.06} M_Sun, placing it near the hydrogen-burning limit for its composition. The 2MASS J18082002--5104378 system is on a thin disk orbit as well, making it the most metal-poor thin disk star system by a considerable margin. The discovery of 2MASS J18082002--5104378 B confirms the existence of low-mass UMP stars and its short orbital period shows that fragmentation in metal-poor protostellar disks can lead to the formation and survival of low-mass stars. We use scaling relations for the typical fragment mass and migration time along with published models of protostellar disks around both UMP and primordial composition stars to explore the formation of low-mass Pop III stars via disk fragmentation. We find evidence that the survival of low-mass secondaries around solar-mass UMP primaries implies the survival of solar-mass secondaries around Pop III primaries with masses 10 M_Sun < M_Star < 100 M_Sun. If true, this inference suggests that solar-mass Pop III stars formed via disk fragmentation could survive to the present day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا