ﻻ يوجد ملخص باللغة العربية
Transiting exoplanets (TEPs) observed just about 10 Myrs after formation of their host systems may serve as the Rosetta Stone for planet formation theories. They would give strong constraints on several aspects of planet formation, e.g. time-scales (planet formation would then be possible within 10 Myrs), the radius of the planet could indicate whether planets form by gravitational collapse (being larger when young) or accretion growth (being smaller when young). We present a survey, the main goal of which is to find and then characterise TEPs in very young open clusters.
AB Aur is a Herbig Ae star that hosts a prototypical transition disk. The disk shows a plethora of features connected with planet formation mechanisms. Understanding the physical and chemical characteristics of these features is crucial to advancing
Connecting the composition of planet-forming disks with that of gas giant exoplanet atmospheres, in particular through C/O ratios, is one of the key goals of disk chemistry. Small hydrocarbons like $rm C_2H$ and $rm C_3H_2$ have been identified as tr
The thermal structure of protoplanetary disks is a fundamental characteristic of the system that has wide reaching effects on disk evolution and planet formation. In this study, we constrain the 2D thermal structure of the protoplanetary disk TW Hya
Molecular D/H ratios are frequently used to probe the chemical past of Solar System volatiles. Yet it is unclear which parts of the Solar Nebula hosted an active deuterium fractionation chemistry. To address this question, we present 0.2-0.4 ALMA obs
Several model-independent parameterizations of deviations from General Relativity have been developed to test Einsteins theory. Although these different parameterizations were developed for different gravitational observables, they ultimately all tes