ترغب بنشر مسار تعليمي؟ اضغط هنا

Comments on Observation of Long-Range, Near-Side Angular Correlations in proton-proton Collisions at the LHC by CMS Collaboration. arXiv:1009.4122[hep-ex]

66   0   0.0 ( 0 )
 نشر من قبل Brijesh K. Srivastava
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present comments on the paper Observation of Long-Range, Near-Side Angular Correlations in proton-proton Collisions at the LHC.


قيم البحث

اقرأ أيضاً

Two-particle angular correlations are studied in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of $sqrt{s_{text{NN}}}=5$TeV, collected with the LHCb detector at the LHC. The analysis is based on data recorded in two beam configura tions, in which either the direction of the proton or that of the lead ion is analysed. The correlations are measured in the laboratory system as a function of relative pseudorapidity, $Deltaeta$, and relative azimuthal angle, $Deltaphi$, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side, $Deltaphi approx 0$, is observed in the pseudorapidity range $2.0<eta<4.9$. This measurement of long-range correlations on the near side in proton-lead collisions extends previous observations into the forward region up to $eta=4.9$. The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. However, the correlation in the direction of the lead and proton beams are found to be compatible when comparing events with similar absolute activity in the direction analysed.
We report on the expected sensitivity of dedicated scintillator-based detectors at the LHC for elementary particles with charges much smaller than the electron charge. The dataset provided by a prototype scintillator-based detector is used to charact erise the performance of the detector and provide an accurate background projection. Detector designs, including a novel slab detector configuration, are considered for the data taking period of the LHC to start in 2022 (Run 3) and for the high luminosity LHC. With the Run 3 dataset, the existence of new particles with masses between 10 MeV and 45 GeV could be excluded at 95% confidence level for charges between 0.003e and 0.3e, depending on their mass. With the high luminosity LHC dataset, the expected limits would reach between 10 MeV and 80 GeV for charges between 0.0018e and 0.3e, depending on their mass
146 - HyangKyu Park 2011
Intense and collimated neutrino beams are produced by charm and beauty particle decays from proton-proton collisions at the LHC. A neutrino experiment would be run parasitically without interrupting the LHC physics program during the collider run. We estimate the neutrino fluxes from proton-proton collisions at $sqrt{s}=14$ TeV of the LHC with the designed luminosity, $10^{34} lumi$. By mounting about 200 tons of fiducial volume of a neutrino detector at 300 $m$ away from the interaction point, about 150,000 of charged current neutrino events per year can be observable.
Pseudorapidity (eta) distributions of charged particles produced in proton-proton collisions at a centre-of-mass energy of 8 TeV are measured in the ranges abs(eta) < 2.2 and 5.3 < abs(eta) < 6.4 covered by the CMS and TOTEM detectors, respectively. The data correspond to an integrated luminosity of 45 inverse microbarns. Measurements are presented for three event categories. The most inclusive category is sensitive to 91-96% of the total inelastic proton-proton cross section. The other two categories are disjoint subsets of the inclusive sample that are either enhanced or depleted in single diffractive dissociation events. The data are compared to models used to describe high-energy hadronic interactions. None of the models considered provide a consistent description of the measured distributions.
A model for exclusive diffractive resonance production in proton-proton collisions at LHC energies is presented. This model is based on the convolution of the Donnachie-Landshoff parameterisation of Pomeron flux in the proton with the Pomeron cross s ection for resonance production. The hadronic cross section for f$_{0}$(980) and f$_{2}$(1270) production at midrapidity is given differentially in mass and transverse momentum of the resonance. The proton fractional longitudinal momentum loss is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا