ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete Characterization of the Ground Space Structure of Two-Body Frustration-Free Hamiltonians for Qubits

50   0   0.0 ( 0 )
 نشر من قبل Zhengfeng Ji
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body interactions between qubits is known to be solvable in polynomial time. It is also shown recently that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit states. However, it remains unclear whether the whole ground space is of any succinct structure. Here, we give a complete characterization of the ground space of any two-body frustration-free Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure. This characterization allows us to show that the problem of determining the ground state degeneracy is as hard as, but no harder than, its classical analog.

قيم البحث

اقرأ أيضاً

Providing system-size independent lower bounds on the spectral gap of local Hamiltonian is in general a hard problem. For the case of finite-range, frustration free Hamiltonians on a spin lattice of arbitrary dimension, we show that a property of the ground state space is sufficient to obtain such a bound. We furthermore show that such a condition is necessary and equivalent to a constant spectral gap. Thanks to this equivalence, we can prove that for gapless models in any dimension, the spectral gap on regions of diameter $n$ is at most $oleft(frac{log(n)^{2+epsilon}}{n}right)$ for any positive $epsilon$.
Many fundamental and applied experiments in quantum optics require transferring nonclassical states of light through large distances. In this context the free-space channels are a very promising alternative to optical fibers as they are mobile and en able to establish communications with moving objects, using satellites for global quantum links. For such channels the atmospheric turbulence is the main disturbing factor. The statistical properties of the fluctuating transmittance through the turbulent atmosphere are given by the probability distribution of transmittance (PDT). We derive the consistent PDTs for the atmospheric quantum channels by step-by-step inclusion of various atmospheric effects such as beam wandering, beam broadening and deformation of the beam into elliptic form, beam deformations into arbitrary forms. We discuss the applicability of PDT models for different propagation distances and optical turbulence strengths in the case when the receiver module has an annular aperture. We analyze the optimal detection and correction strategies which can improve the channel transmission characteristics. The obtained results are important for the design of optical experiments including postselection and adaptive strategies and for the security analysis of quantum communication protocols in free-space.
Atypical eigenstates in the form of quantum scars and fragmentation of Hilbert space due to conservation laws provide obstructions to thermalization in the absence of disorder. In certain models with dipole and $U(1)$ conservation, the fragmentation results in subdiffusive transport. In this paper we study the interplay between scarring and weak fragmentation giving rise to anomalous hydrodynamics in a class of one-dimensional spin-1 frustration-free projector Hamiltonians, known as deformed Motzkin chain. The ground states and low-lying excitations of these chains exhibit large entanglement and critical slowdown. We show that at high energies the particular form of the projectors causes the emergence of disjoint Krylov subspaces for open boundary conditions, with an exact quantum scar being embedded in each subspace, leading to slow growth of entanglement and localized dynamics for specific out-of-equilibrium initial states. Furthermore, focusing on infinite temperature, we unveil that spin transport is subdiffusive, which we corroborate by simulations of suitable stochastic cellular automaton circuits. Compared to dipole moment conserving systems, the deformed Motzkin chain appears to belong to a different universality class with distinct dynamical transport exponent and only polynomially many Krylov subspaces.
We develop a polarization characterization platform for optical devices in free-space quantum communications. We demonstrate an imaging polarimeter, which analyzes both incident polarization states and the angle of incidence, attached to a six-axis c ollaborative robot arm, enabling polarization characterization at any position and direction with consistent precision. We present a detailed description of each subsystem including the calibration and polarization-test procedure, and analyze polarization-measurement errors caused by imperfect orientations of the robot arm using a Mueller-matrix model of polarimeters at tilt incidence. We perform a proof-of-principle experiment for an angle-dependent polarization test for a commercial silver-coated mirror for which the polarization states of the reflected light can be accurately calculated. Quantitative agreement between the theory and experiment validates our methodology. We demonstrate the polarization test for a 20.3 cm lens designed for a quantum optical transmitter in Canadas Quantum Encryption and Science Satellite (QEYSSat) mission.
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras $sl(2,mathbb{R})$ or $su(2)$ according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential. PACS: 03.65.-w; 03.65.Fd MSC: 81R05; 20C35; 22E70
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا