ترغب بنشر مسار تعليمي؟ اضغط هنا

Leading twist shadowing, black disk regime and forward hadron production

29   0   0.0 ( 0 )
 نشر من قبل Mark Strikman
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Mark Strikman




اسأل ChatGPT حول البحث

We review theory of the leading twist nuclear shadowing, and describe phenomenon of post-selection suppression of leading parton spectrum (effective fractional energy losses) in the proximity of the black disk regime. We argue that $2 to 2$ mechanism dominates in the inclusive leading pion production in d-Au collisions and explain that the post-selection naturally explains both the magnitude of the suppression of the forward pion production in d-Au collisions and the pattern of the forward - central correlations. At the same time this pattern of correlations rules out $2to 1$ mechanism as the main source of the inclusive leading pion yield. It is demonstrated that the mechanism of the double parton interactions gives an important contribution to the production of two leading pions in $pp$ scattering opening a new way to study correlations of leading quarks in the nucleon. The same mechanism is enhanced in $dAu to pi^0pi^0 +X$ collisions and explains the dominance of $Deltaphi$ independent component and suppression of the away side peak.

قيم البحث

اقرأ أيضاً

We show that a new beam-spin asymmetry appears in deep inelastic inclusive lepto-production at low transverse momenta when a hadron in the target fragmentation region is observed in association with another hadron in the current fragmentation region. The beam leptons are longitudinally polarized while the target nucleons are unpolarized. This asymmetry is a leading-twist effect generated by the correlation between the transverse momentum of quarks and the transverse momentum of the hadron emitted by the target. Experimental signatures of this effect are discussed.
80 - L. Frankfurt 2011
We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of the Gribov-Glauber theory, QCD factorization theorems, and the HERA QCD analysis of diffra ction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei---inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering---and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and in certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at the Relativistic Heavy Ion Collider (RHIC). Detailed tests will be possible at an Electron-Ion Collider (EIC) in the USA and at the Large Hadron-Electron Collider (LHeC) at CERN.
High order calculation at semi-hard scale is very important, but a satisfactory calculation framework is still missing. We propose a systematic method to regularize rapidity divergences in the CGC factorization, which makes higher order calculation r igorous and straight forward. By applying this method to single hadron production in pA collision, we find the kinematic constraint effect introduced by hand in previous works comes out automatically, but with different values. The difference is crucial for our next-to-leading order (NLO) result to have a smaller theoretical uncertainty comparing with LO result, which makes high order calculation in CGC factorization to be useful. As a byproduct, the negativity problem found in literature can also be overcome in our framework by a proper choosing of factorization scale.
77 - Min He , Ralf Rapp 2020
Recent measurements of various charm-hadron ratios in $pp$, $p$-Pb and Pb-Pb collisions at the LHC have posed challenges to the theoretical understanding of heavy-quark hadronization. The $Lambda_c/D^0$ ratio in $pp$ and $p$-Pb collisions shows large r values than those found in $e^+e^-$ and $ep$ collisions and predicted by Monte-Carlo event generators based on string fragmentation, at both low and intermediate transverse momenta ($p_T$). In AA collisions, the $D_s/D$ ratio is significantly enhanced over its values in $pp$, while the $Lambda_c/D^0$ data indicates a further enhancement at intermediate $p_T$. Here, we report on our recent developments for a comprehensive description of the charm hadrochemistry and transport in $pp$ and $AA$ collisions. For $pp$ collisions we find that the discrepancy between the $Lambda_c/D^0$ data and model predictions is much reduced by using a statistical hadronization model augmented by a large set of missing states in the charm-baryon spectrum, contributing to the $Lambda_c$ via decay feeddown. For $AA$ collisions, we develop a 4-momentum conserving resonance recombination model for charm-baryon formation implemented via event-by-event simulations that account for space-momentum correlations (SMCs) in transported charm- and thermal light-quark distributions. The SMCs, together with the augmented charm-baryon states, are found to play an important role in describing the baryon-to-meson enhancement at intermediate momenta. We emphasize the importance of satisfying the correct (relative) chemical equilibrium limit when computing the charm hadrochemistry and its momentum dependence with coalescence models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا