ﻻ يوجد ملخص باللغة العربية
The concept of the Kondo box describes a single spin, antiferromagnetically coupled to a quantum dot with a finite level spacing. Here, a Kondo box is formed in a carbon nanotube interacting with a localized electron. We investigate the spins of its first few eigenstates and compare them to a recent theory. In an open Kondo-box, strongly coupled to the leads, we observe a non-monotonic temperature dependence of the nanotube conductance, which results from a competition between the Kondo-box singlet and the conventional Kondo state that couples the nanotube to the leads.
We developed a theoretical framework which extends the method of textit{full counting statistics} (FCS) from conventional single channel Kondo screening schemes to multi-channel Kondo paradigm. The developed idea of FCS has been demonstrated consider
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impu
Understanding the interplay between many-body phenomena and non-equilibrium in systems with entangled spin and orbital degrees of freedom is a central objective in nano-electronics. We demonstrate that the combination of Coulomb interaction, spin-orb
We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons with zero orbital angular momentum ($m=0$) coalesc at the
Kondo effect offers an important paradigm to understand strong correlated many-body physics. Although under intensive study, some of important properties of Kondo effect, in systems where both itinerant coupling and localized coupling play significan