ﻻ يوجد ملخص باللغة العربية
We present parallaxes of 11 mid-to-late T dwarfs observed in the UKIRT Infrared Deep Sky Survey. We use these results to test the reliability of model predictions in magnitude-color space, determine a magnitude-spectral type calibration, and, estimate a bolometric luminosity and effective temperature range for the targets. We used observations from the UKIRT WFCAM instrument pipeline processed at the Cambridge Astronomical Survey Unit. The parallaxes and proper motions of the sample were calculated using standard procedures. The bolometric luminosity was estimated using near- and mid-infrared observations with two different methods. The corresponding effective temperature ranges were found adopting a large age-radius range. We show the models are unable to predict the colors of the latest T dwarfs indicating the incompleteness of model opacities for NH3, CH4 and H2 as the temperature declines. We report the effective temperature ranges obtained.
We used HST/WFC3 observations of a sample of 26 nearby ($le$20 pc) mid to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs. Tightly-separated companions were searched for using a double-PSF fitting
Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late T-dwarf (600-800K) near infrared spectra. Wit
We present Spitzer 7.6-14.5um spectra of ULAS J003402.77-005206.7 and ULAS J133553.45+113005.2, two T9 dwarfs with the latest spectral types currently known. We fit synthetic spectra and photometry to the near- through mid-infrared energy distributio
New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station (NOFS) are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years
We present a large forward-modeling analysis for 55 late-T (T7-T9) dwarfs, using low-resolution ($Rapprox150$) near-infrared spectra and cloudless Sonora-Bobcat model atmospheres. We derive the objects effective temperatures, surface gravities, metal