ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of different forms for the spin and orbital components of the angular momentum of light

215   0   0.0 ( 0 )
 نشر من قبل Andrew Stewart
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. M. Stewart




اسأل ChatGPT حول البحث

We compare three attempts that have been made to decompose the angular momentum of the electromagnetic field into components of an orbital and spin nature. All three expressions are different and it appears, on the basis of classical electrodynamics, that there is no preferred way of decomposing the angular momentum of the electromagnetic field into orbital and spin components, even in an inertial frame.



قيم البحث

اقرأ أيضاً

160 - A. M. Stewart 2006
A decomposition of the angular momentum of the classical electromagnetic field into orbital and spin components that is manifestly gauge invariant and general has been obtained. This is done by decomposing the electric field into its longitudinal and transverse parts by means of the Helmholtz theorem. The orbital and spin components of the angular momentum of any specified electromagnetic field can be found from this prescription.
Orbital angular momentum (OAM) of light is an attractive degree of freedom for funda- mentals studies in quantum mechanics. In addition, the discrete unbounded state-space of OAM has been used to enhance classical and quantum communications. Unambigu ous mea- surement of OAM is a key part of all such experiments. However, state-of-the-art methods for separating single photons carrying a large number of different OAM values are limited to a theoretical separation efficiency of about 77 percent. Here we demonstrate a method which uses a series of unitary optical transformations to enable the measurement of lights OAM with an experimental separation efficiency of more than 92 percent. Further, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty achieved by our method makes it particu- larly attractive for enhancing the information capacity of multi-level quantum cryptography systems.
A quasi-continuous composite perfect electric conductor-perfect magnetic conductor metasurface and a systematic metasurface design process are proposed for the orbital angular momentum (OAM) generation. The metasurfaces reflect the incident left circ ularly polarized (LCP)/right circularly polarized (RCP) plane wave to RCP/LCP vortex beams carrying OAM at normal or oblique direction. Unlike conventional metasurfaces that are composed of discrete scatterers, the scatterers on the proposed metasurface form a quasi-continuous pattern. The patterning of the metasurface is calculated through grating vectors, and no optimization of single scatterer is required. Furthermore, the distortions from local-response discontinuity of discrete scatterers are avoided. This letter provides great convenience to high-quality OAM generation.
Electromagnetic (EM) waves with helical wavefront carry orbital angular momentum (OAM), which is associated with the azimuthal phase of the complex electric field. OAM is a new degree of freedom in EM waves and is promising for channel multiplexing i n communication system. Although the OAM-carrying EM wave attracts more and more attention, the method of OAM generation at microwave frequencies still faces challenges, such as efficiency and simulation time. In this work, by using the circuit theory and equivalence principle, we build two simplified models, one for a single scatter and one for the whole metasurface to predict their EM responses. Both of the models significantly simplify the design procedure and reduce the simulation time. In this paper, we propose an ultrathin complementary metasurface that converts a left-handed (right-handed) circularly polarized plane wave without OAM to a right-handed (left-handed) circularly polarized wave with OAM of arbitrary orders and a high transmission efficiency can be achieved.
In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single photon to its polarization. Such transfer of quantum information, completely reversible, has been imple mented adopting a electrically tunable q-plate device and a Sagnac interferomenter with a Doves prism. The adopted scheme exhibits a high fidelity and low losses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا