ﻻ يوجد ملخص باللغة العربية
We characterize the energy loss of the non-equilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.
We report experimental measurements of electronic Raman scattering under resonant conditions by electrons in individual single-walled carbon nanotubes (SWNTs). The inelastic Raman scattering at low frequency range reveals a single particle excitation
We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.
We present a detailed comparison between theoretical predictions on electron scattering processes in metallic single-walled carbon nanotubes with defects and experimental data obtained by scanning tunneling spectroscopy of Ar$^+$ irradiated nanotubes
We show that new low-energy photoluminescence (PL) bands can be created in semiconducting single-walled carbon nanotubes by intense pulsed excitation. The new bands are attributed to PL from different nominally dark excitons that are brightened due t
We characterize the terahertz detection mechanism in antenna-coupled metallic single-walled carbon nanotubes. At low temperature, 4.2 K, a peak in the low-frequency differential resistance is observed at zero bias current due to non-Ohmic contacts. T