ﻻ يوجد ملخص باللغة العربية
Recent observations of the rotation curve of M31 show a rise of the outer part that can not be understood in terms of standard dark matter models or perturbations of the galactic disc by M31s satellites. Here, we propose an explanation of this dynamical feature based on the influence of the magnetic field within the thin disc. We have considered standard mass models for the luminous mass distribution, a NFW model to describe the dark halo, and we have added up the contribution to the rotation curve of a magnetic field in the disc, which is described by an axisymmetric pattern. Our conclusion is that a significant improvement of the fit in the outer part is obtained when magnetic effects are considered. The best-fit solution requires an amplitude of ~4 microG with a weak radial dependence between 10 and 38 kpc.
We present Keck/HIRES spectra of 3 globular clusters in the outer halo of M31, at projected distances beyond ~80 kpc from M31. The measured recession velocities for all 3 globular clusters confirm their association with the globular cluster system of
We present a measurement of the trigonometric parallax of IRAS 05168+3634 with VERA. The parallax is 0.532 +/- 0.053 mas, corresponding to a distance of 1.88 +0.21/-0.17 kpc. This is significantly closer than the previous distance estimate of 6 kpc b
We investigate the possibility of measuring intergalactic magnetic fields using the dispersion measures and rotation measures of fast radio bursts. With Bayesian methods, we produce probability density functions for values of these measures. We disti
We report measurement of trigonometric parallax of IRAS 05168+3634 with VERA. The parallax is 0.532 +/- 0.053 mas, corresponding to a distance of 1.88+0.21/-0.17 kpc. This result is significantly smaller than the previous distance estimate of 6 kpc b
The observed rotation curves of disc galaxies, ranging from late-type dwarf galaxies to early-type spirals, can be fit remarkably well simply by scaling up the contributions of the stellar and HI discs. This `baryonic scaling model can explain the fu