ترغب بنشر مسار تعليمي؟ اضغط هنا

Local stochastic non-Gaussianity and N-body simulations

122   0   0.0 ( 0 )
 نشر من قبل Kendrick Smith
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale clustering of highly biased tracers of large-scale structure has emerged as one of the best observational probes of primordial non-Gaussianity of the local type (i.e. f_{NL}^{local}). This type of non-Gaussianity can be generated in multifield models of inflation such as the curvaton model. Recently, Tseliakhovich, Hirata, and Slosar showed that the clustering statistics depend qualitatively on the ratio of inflaton to curvaton power xi after reheating, a free parameter of the model. If xi is significantly different from zero, so that the inflaton makes a non-negligible contribution to the primordial adiabatic curvature, then the peak-background split ansatz predicts that the halo bias will be stochastic on large scales. In this paper, we test this prediction in N-body simulations. We find that large-scale stochasticity is generated, in qualitative agreement with the prediction, but that the level of stochasticity is overpredicted by ~30%. Other predictions, such as xi independence of the halo bias, are confirmed by the simulations. Surprisingly, even in the Gaussian case we do not find that halo model predictions for stochasticity agree consistently with simulations, suggesting that semi-analytic modeling of stochasticity is generally more difficult than modeling halo bias.



قيم البحث

اقرأ أيضاً

289 - David Wands (ICG , Portsmouth , 2010
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non -linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.
In this paper we present the implementation of an efficient formalism for the generation of arbitrary non-Gaussian initial conditions for use in N-body simulations. The methodology involves the use of a separable modal approach for decomposing a prim ordial bispectrum or trispectrum. This approach allows for the far more efficient generation of the non-Gaussian initial conditions already described in the literature, as well as the generation for the first time of non-separable bispectra and the special class of diagonal-free trispectra. The modal approach also allows for the reconstruction of the spectra from given realisations, a fact which is exploited to provide an accurate consistency check of the simulations.
In the next decade, cosmological surveys will have the statistical power to detect the absolute neutrino mass scale. N-body simulations of large-scale structure formation play a central role in interpreting data from such surveys. Yet these simulatio ns are Newtonian in nature. We provide a quantitative study of the limitations to treating neutrinos, implemented as N-body particles, in N-body codes, focusing on the error introduced by neglecting special relativistic effects. Special relativistic effects are potentially important due to the large thermal velocities of neutrino particles in the simulation box. We derive a self-consistent theory of linear perturbations in Newtonian and non-relativistic neutrinos and use this to demonstrate that N-body simulations overestimate the neutrino free-streaming scale, and cause errors in the matter power spectrum that depend on the initial redshift of the simulations. For $z_{i} lesssim 100$, and neutrino masses within the currently allowed range, this error is $lesssim 0.5%$, though represents an up to $sim 10%$ correction to the shape of the neutrino-induced suppression to the cold dark matter power spectrum. We argue that the simulations accurately model non-linear clustering of neutrinos so that the error is confined to linear scales.
105 - M. Grossi 2009
The description of the abundance and clustering of halos for non-Gaussian initial conditions has recently received renewed interest, motivated by the forthcoming large galaxy and cluster surveys, which can potentially yield constraints of order unity on the non-Gaussianity parameter f_{NL}. We present tests on N-body simulations of analytical formulae describing the halo abundance and clustering for non-Gaussian initial conditions. We calibrate the analytic non-Gaussian mass function of Matarrese et al.(2000) and LoVerde et al.(2008) and the analytic description of clustering of halos for non-Gaussian initial conditions on N-body simulations. We find excellent agreement between the simulations and the analytic predictions if we make the corrections delta_c --> delta_c X sqrt{q} and delta_c --> delta_c X q where q ~ 0.75, in the density threshold for gravitational collapse and in the non-Gaussian fractional correction to the halo bias, respectively. We discuss the implications of this correction on present and forecasted primordial non-Gaussianity constraints. We confirm that the non-Gaussian halo bias offers a robust and highly competitive test of primordial non-Gaussianity.
Primordial black holes (PBHs) cannot be produced abundantly enough to be the dark matter in canonical single-field inflation under slow roll. This conclusion is robust to local non-Gaussian correlations between long- and short-wavelength curvature mo des, which we show have no effect in slow roll on local primordial black hole abundances. For the prototypical model which evades this no go, ultra-slow roll (USR), these squeezed non-Gaussian correlations have at most an order unity effect on the variance of PBH-producing curvature fluctuations for models that would otherwise fail to form sufficient PBHs. Moreover, the transition out of USR, which is necessary for a successful model, suppresses even this small enhancement unless it causes a large increase in the inflaton kinetic energy in a fraction of an e-fold, which we call a large and fast transition. Along the way we apply the in-in formalism, the delta N formalism, and gauge transformations to compute non-Gaussianities and illuminate different aspects of the physical origin of these results. Local non-Gaussianity in the squeezed limit does not weaken the Gaussian conclusion that PBHs as dark matter in canonical single-field inflation require a complicated and fine-tuned potential shape with an epoch where slow roll is transiently violated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا