ﻻ يوجد ملخص باللغة العربية
We study the small deviation probabilities of a family of very smooth self-similar Gaussian processes. The canonical process from the family has the same scaling property as standard Brownian motion and plays an important role in the study of zeros of random polynomials. Our estimates are based on the entropy method, discovered in Kuelbs and Li (1992) and developed further in Li and Linde (1999), Gao (2004), and Aurzada et al. (2009). While there are several ways to obtain the result w.r.t. the $L_2$ norm, the main contribution of this paper concerns the result w.r.t. the supremum norm. In this connection, we develop a tool that allows to translate upper estimates for the entropy of an operator mapping into $L_2[0,1]$ by those of the operator mapping into $C[0,1]$, if the image of the operator is in fact a Holder space. The results are further applied to the entropy of function classes, generalizing results of Gao et al. (2010).
Let $X^{(delta)}$ be a Wishart process of dimension $delta$, with values in the set of positive matrices of size $m$. We are interested in the large deviations for a family of matrix-valued processes ${delta^{-1} X_t^{(delta)}, t leq 1 }$ as $delta$
We derive a covariance formula for the class of `topological events of smooth Gaussian fields on manifolds; these are events that depend only on the topology of the level sets of the field, for example (i) crossing events for level or excursion sets,
We study two one-parameter families of point processes connected to random matrices: the Sine_beta and Sch_tau processes. The first one is the bulk point process limit for the Gaussian beta-ensemble. For beta=1, 2 and 4 it gives the limit of the GOE,
We formulate the large deviations for a class of two scale chemical kinetic processes motivated from biological applications. The result is successfully applied to treat a genetic switching model with positive feedbacks. The corresponding Hamiltonian
We consider a class of tempered subordinators, namely a class of subordinators with one-dimensional marginal tempered distributions which belong to a family studied in [3]. The main contribution in this paper is a non-central moderate deviations resu