In this paper we will discuss the images of Planetary Nebulae that have recently been obtained with PACS and SPIRE on board the Herschel satellite. This comprises results for NGC 650 (the little Dumbbell nebula), NGC 6853 (the Dumbbell nebula), and NGC 7293 (the Helix nebula).
Herschel PACS and SPIRE images have been obtained over a 30x30 area around the well-known carbon star CW Leo (IRC +10 216). An extended structure is found in an incomplete arc of ~22 diameter, which is cospatial with the termination shock due to inte
raction with the interstellar medium (ISM) as defined by Sahai & Chronopoulos from ultraviolet GALEX images. Fluxes are derived in the 70, 160, 250, 350, and 550 um bands in the region where the interaction with the ISM takes place, and this can be fitted with a modified black body with a temperature of 25+-3 K. Using the published proper motion and radial velocity for the star, we derive a heliocentric space motion of 25.1 km/s. Using the PACS and SPIRE data and the analytical formula of the bow shock structure, we infer a de-projected standoff distance of the bow shock of R0 = (8.0+-0.3)x10^17 cm. We also derive a relative velocity of the star with respect to the ISM of (106.6+-8.7)/sqrt(n_ISM) km/s, where n_ISM is the number density of the local ISM.
We obtained Herschel PACS and SPIRE images of the thermal emission of the debris disk around the A5V star {beta} Pic. The disk is well resolved in the PACS filters at 70, 100, and 160 {mu}m. The surface brightness profiles between 70 and 160 {mu}m sh
ow no significant asymmetries along the disk, and are compatible with 90% of the emission between 70 and 160 {mu}m originating in a region closer than 200 AU to the star. Although only marginally resolving the debris disk, the maps obtained in the SPIRE 250 - 500 {mu}m filters provide full-disk photometry, completing the SED over a few octaves in wavelength that had been previously inaccessible. The small far-infrared spectral index ({beta} = 0.34) indicates that the grain size distribution in the inner disk (<200AU) is inconsistent with a local collisional equilibrium. The size distribution is either modified by non-equilibrium effects, or exhibits a wavy pattern, caused by an under-abundance of impactors which have been removed by radiation pressure.
The density and temperature structures of dense cores in the L1495 cloud of the Taurus star-forming region are investigated using Herschel SPIRE and PACS images in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m and 500 $mu$m continuum bands. A sample
consisting of 20 cores, selected using spectral and spatial criteria, is analysed using a new maximum likelihood technique, COREFIT, which takes full account of the instrumental point spread functions. We obtain central dust temperatures, $T_0$, in the range 6-12 K and find that, in the majority of cases, the radial density falloff at large radial distances is consistent with the $r^{-2}$ variation expected for Bonnor-Ebert spheres. Two of our cores exhibit a significantly steeper falloff, however, and since both appear to be gravitationally unstable, such behaviour may have implications for collapse models. We find a strong negative correlation between $T_0$ and peak column density, as expected if the dust is heated predominantly by the interstellar radiation field. At the temperatures we estimate for the core centres, carbon-bearing molecules freeze out as ice mantles on dust grains, and this behaviour is supported here by the lack of correspondence between our estimated core locations and the previously-published positions of H$^{13}$CO$^+$ peaks. On this basis, our observations suggest a sublimation-zone radius typically $sim 10^4$ AU. Comparison with previously-published N$_2$H$^+$ data at 8400 AU resolution, however, shows no evidence for N$_2$H$^+$ depletion at that resolution.
We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten protoplanetary nebulae and young planetary nebulae. The high spectral resolution provided by HIFI yields acc
urate measurements of the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. We have detected FIR/sub-mm lines of several molecules, in particular of 12CO, 13CO, and H2O. Emission from other species, like NH3, OH, H2^{18}O, HCN, SiO, etc, has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperature Tk >~ 200 K. In contrast, the fast winds in OH 231.8+4.2 and NGC 6302 are cold, Tk ~ 30 K. Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic values around 100 K. We also discuss how the complex structure of the nebulae can affect our estimates, considering two-component models. We argue that the differences in temperature in the different nebulae can be due to cooling after the gas acceleration (that is probably due to shocks); for instance, CRL 618 is a case of very recent acceleration, less than ~ 100 yr ago, while the fast gas in OH 231.8+4.2 was accelerated ~ 1000 yr ago. We also find indications that the densest gas tends to be cooler, which may be explained by the expected increase of the radiative cooling efficiency with the density.
Fast outflows and their interaction with slow shells (generally known as the fossil circumstellar envelope of asymptotic giant branch stars) play an important role in the structure and kinematics of protoplanetary and planetary nebulae (pPNe, PNe). T
o properly study their effects within these objects, we also need to observe the intermediate-temperature gas, which is only detectable in the far-infrared (FIR) and submillimetre (submm) transitions. We study the physical conditions of the outflows presented in a number of pPNe and PNe, with a focus on their temperature and excitation states. We carried out Herschel/HIFI observations in the submm lines of 12CO in nine pPNe and nine PNe and complemented them with low-J CO spectra obtained with the IRAM 30m telescope and taken from the literature. The spectral resolution of HIFI allows us to identify and measure the different nebular components in the line profiles. The comparison with large velocity gradient (LVG) model predictions was used to estimate the physical conditions of the warm gas in the nebulae, such as excitation conditions, temperature, and density. We found high kinetic temperatures for the fast winds of pPNe, typically reaching between 75 K and 200 K. In contrast, the high-velocity gas in the sampled PNe is colder, with characteristic temperatures between 25 K and 75 K, and it is found in a lower excitation state. We interpret this correlation of the kinetic temperature and excitation state of fast outflows with the amount of time elapsed since their acceleration (probably driven by shocks) as a consequence of the cooling that occurred during the pPN phase.