ﻻ يوجد ملخص باللغة العربية
Distributed Arithmetic Coding (DAC) is an effective implementation of Slepian-Wolf coding, especially for short data blocks. To research its properties, the concept of DAC codeword distribution along proper and wrong decoding paths has been introduced. For DAC codeword distribution of equiprobable binary sources along proper decoding paths, the problem was formatted as solving a system of functional equations. However, up to now, only one closed form was obtained at rate 0.5, while in general cases, to find the closed form of DAC codeword distribution still remains a very difficult task. This paper proposes three kinds of approximation methods for DAC codeword distribution of equiprobable binary sources along proper decoding paths: numeric approximation, polynomial approximation, and Gaussian approximation. Firstly, as a general approach, a numeric method is iterated to find the approximation to DAC codeword distribution. Secondly, at rates lower than 0.5, DAC codeword distribution can be well approximated by a polynomial. Thirdly, at very low rates, a Gaussian function centered at 0.5 is proved to be a good and simple approximation to DAC codeword distribution. A simple way to estimate the variance of Gaussian function is also proposed. Plenty of simulation results are given to verify theoretical analyses.
Distributed Arithmetic Coding (DAC) proves to be an effective implementation of Slepian-Wolf Coding (SWC), especially for short data blocks. To study the property of DAC codewords, the author has proposed the concept of DAC codeword spectrum. For equ
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The propose
We propose a novel soft-aided iterative decoding algorithm for product codes (PCs). The proposed algorithm, named iterative bounded distance decoding with combined reliability (iBDD-CR), enhances the conventional iterative bounded distance decoding (
We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabili
Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. B