ﻻ يوجد ملخص باللغة العربية
In fermionic systems with different types of quasi-particles, attractive interactions can give rise to exotic superconducting states, as pair density wave (PDW) superconductivity and breached pairing. In the last years the search for these new types of ground states in cold atom and in metallic systems has been intense. In the case of metals the different quasi-particles may be the up and down spin bands in an external magnetic field or bands arising from distinct atomic orbitals that coexist at a common Fermi surface. These systems present a complex phase diagram as a function of the difference between the Fermi wave-vectors of the different bands. This can be controlled by external means, varying the density in the two-component cold atom system or, in a metal, by applying an external magnetic field or pressure. Here we study the zero temperature instability of the normal system as the Fermi wave-vectors mismatch of the quasi-particles (bands) is reduced and find a second order quantum phase transition to a PDW superconducting state. From the nature of the quantum critical fluctuations close to the superconducting quantum critical point (SQCP), we obtain its dynamic critical exponent. It turns out to be $z=2$ and this allows to fully characterize the SQCP for dimensions $d ge 2$.
We consider 2+1 dimensional conformal gauge theories coupled to additional degrees of freedom which induce a spatially local but long-range in time $1/(tau-tau)^2$ interaction between gauge-neutral local operators. Such theories have been argued to d
There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase trans
Understanding electrical transport in strange metals, including the seeming universality of Planckian $T$-linear resistivity, remains a longstanding challenge in condensed matter physics. We propose that local imaging techniques, such as nitrogen vac
We propose a theory of longitudinal resistivity in the normal phase of quasi-one-dimensional organic superconductors near the quantum critical point where antiferromagnetism borders with superconductivity under pressure. The linearized semi-classical
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show