ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaporative Cooling of Antiprotons to Cryogenic Temperatures

46   0   0.0 ( 0 )
 نشر من قبل Gorm Bruun Andresen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise emph{CPT} test on trapped antihydrogen is a long-standing goal.

قيم البحث

اقرأ أيضاً

A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped by a rf field RF1, the cooling procedure is facilitated using a second rf source RF2. This second rf field produces a controlled coupling between the spin states dressed by RF1. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the interaction. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly-dressed states and escape out of the trap. Our results also show that when the frequencies of the fields RF1 and RF2 are separated by at least the Rabi frequency associated with RF1, additional evaporation zones appear which can make this process more efficient.
We report the realization of Bose-Einstein condensates of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises Sub Doppler laser cooling of large atomic clouds with more than 10^10 atoms and eva porative cooling in optical dipole traps where the collisional cross section can be increased using magnetic Feshbach resonances. Large condensates with almost 10^6 atoms can be produced in less than 15 seconds. Our achievements eliminate the need for sympathetic cooling with Rb atoms which was the usual route implemented till date due to the unfavourable collisional property of 39K. Our findings simplify the experimental set-up for producing Bose-Einstein condensates of 39K atoms with tunable interactions, which have a wide variety of promising applications including atom-interferometry to studies on the interplay of disorder and interactions in quantum gases.
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the mag netic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.
313 - P. H. Donnan 2012
We present a scheme for laser cooling applicable for an extremely dilute sample of magnetically trapped antihydrogen atoms($bar{H}$). Exploiting and controlling the dynamical coupling between the $bar{H}$s motional degrees of freedom in a magnetic tr ap, three-dimensional cooling can be achieved from Doppler cooling on one dimension using the $1s_{1/2}-2p_{3/2}$ transition. The lack of three-dimensional access to the trapped $bar{H}$ and the nearly separable nature of the trapping potential leads to difficulties in cooling. Using realistic models for the spatial variation of the magnetic fields, we find that it should be possible to cool the $bar{H}$s to $sim 20$ mK even with these constraints.
Helium atoms in Rydberg states have been manipulated coherently with microwave radiation pulses near a gold surface and near a superconducting NbTiN surface at a temperature of $3 text{K}$. The experiments were carried out with a skimmed supersonic b eam of metastable $(1text{s})^1(2text{s})^1, {}^1text{S}_0$ helium atoms excited with laser radiation to $ntext{p}$ Rydberg levels with principal quantum number $n$ between $30$ and $40$. The separation between the cold surface and the center of the collimated beam is adjustable down to $250 mutext{m}$. Short-lived $ntext{p}$ Rydberg levels were coherently transferred to the long-lived $ntext{s}$ state to avoid radiative decay of the Rydberg atoms between the photoexcitation region and the region above the cold surfaces. Further coherent manipulation of the $ntext{s}$ Rydberg levels with pulsed microwave radiation above the surfaces enabled measurements of stray electric fields and allowed us to study the decoherence of the atomic ensemble. Adsorption of residual gas onto the surfaces and the resulting slow build-up of stray fields was minimized by controlling the temperature of the surface and monitoring the partial pressures of H$_2$O, N$_2$, O$_2$ and CO$_2$ in the experimental chamber during the cool-down. Compensation of the stray electric fields to levels below $100 text{mV}/text{cm}$ was achieved over a region of $6 text{mm}$ along the beam-propagation direction which, for the $1770 text{m}/text{s}$ beam velocity, implies the possibility to preserve the coherence of the atomic sample for several microseconds above the cold surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا