ﻻ يوجد ملخص باللغة العربية
The deformation equation of a spacelike submanifold with an arbitrary codimension is given by a general construction without using local frames. In the case of codimension-1, this equation reduces to the evolution equation of the extrinsic curvature of a spacelike hypersurface. In the more interesting case of codimension-2, after selecting a local null frame, this deformation equation reduces to the well known (cross) focusing equations. We show how the thermodynamics of trapping horizons is related to these deformation equations in two different formalisms: with and without introducing quasilocal energy. In the formalism with the quasilocal energy, the Hawking mass in four dimension is generalized to higher dimension, and it is found that the deformation of this energy inside a marginal surface can be also decomposed into the contributions from matter fields and gravitational radiation as in the four dimension. In the formalism without the quasilocal energy, we generalize the definition of slowly evolving future outer trapping horizons proposed by Booth to past trapping horizons. The dynamics of the trapping horizons in FLRW universe is given as an example. Especially, the slowly evolving past trapping horizon in the FLRW universe has close relation to the scenario of slow-roll inflation. Up to the second order of the slowly evolving parameter in this generalization, the temperature (surface gravity) associated with the slowly evolving trapping horizon in the FLRW universe is essentially the same as the one defined by using the quasilocal energy.
We investigate whether the new horizon first law proposed recently still work in $f(R)$ theory. We identify the entropy and the energy of black hole as quantities proportional to the corresponding value of integration, supported by the fact that the
We present modified cosmological scenarios that arise from the application of the gravity-thermodynamics conjecture, using the Barrow entropy instead of the usual Bekenstein-Hawking one. The former is a modification of the black hole entropy due to q
The modified first laws of thermodynamics at the black hole horizon and the cosmological horizon of the Schwarzschild de Sitter black hole and the apparent horizon of the Friedmann-Robertson-Walker cosmology are derived by the surface tensions, respe
We consider the thermodynamics of a horizon surface from the viewpoint of the vacuum tension $tau =(c^4/4G )$. Numerically, $tau approx 3.026times 10^{43}$ Newton. In order of magnitude, this is the tension that has been proposed for microscopic stri
We investigate the validity of the generalized second law of thermodynamics, applying Barrow entropy for the horizon entropy. The former arises from the fact that the black-hole surface may be deformed due to quantum-gravitational effects, quantified