ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature- and Magnetic-Field-Dependent Optical Properties of Heavy Quasiparticles in YbIr2Si2

84   0   0.0 ( 0 )
 نشر من قبل Shin-ichi Kimura
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the temperature- and magnetic-field-dependent optical conductivity spectra of the heavy electron metal YbIr$_2$Si$_2$. Upon cooling below the Kondo temperature ($T_{rm K}$), we observed a typical charge dynamics that is expected for a formation of a coherent heavy quasiparticle state. We obtained a good fitting of the Drude weight of the heavy quasiparticles by applying a modified Drude formula with a photon energy dependence of the quasiparticle scattering rate that shows a similar power-law behavior as the temperature dependence of the electrical resistivity. By applying a magnetic field of 6T below $T_{rm K}$, we found a weakening of the effective dynamical mass enhancement by about 12% in agreement with the expected decrease of the $4f$-conduction electron hybridization on magnetic field.

قيم البحث

اقرأ أيضاً

We report neutron diffraction and magnetization studies of the magnetic order in multiferroic BiFeO3. In ferroelectric monodomain single crystals, there are three magnetic cycloidal domains with propagation vectors equivalent by crystallographic symm etry. The cycloid period slowly grows with increasing temperature. The magnetic domain populations do not change with temperature except in the close vicinity of the N{P}eel temperature, at which, in addition, a small jump in magneti- zation is observed. No evidence for the spin-reorientation transitions proposed in previous Raman and dielectric studies is found. The magnetic cycloid is slightly anharmonic for T=5 K. The an- harmonicity is much smaller than previously reported in NMR studies. At room temperature, a circular cycloid is observed, within errors. We argue that the observed anharmonicity provides important clues for understanding electromagnons in BiFeO3.
We investigate the low temperature (T $<$ 2 K) electronic structure of the heavy fermion superconductor CeCoIn5 (T$_c$ = 2.3 K) by angle-resolved photoemission spectroscopy (ARPES). The hybridization between conduction electrons and f-electrons, whic h ultimately leads to the emergence of heavy quasiparticles responsible for the various unusual properties of such materials, is directly monitored and shown to be strongly band dependent. In particular the most two-dimensional band is found to be the least hybridized one. A simplified multiband version of the Periodic Anderson Model (PAM) is used to describe the data, resulting in semi-quantitative agreement with previous bulk sensitive results from de-Haas-van-Alphen measurements.
86 - J. Reul , L. Fels , N. Qureshi 2013
Compounds with intermediate-size transition metals such as Fe or Mn are close to the transition between charge-transfer systems and Mott-Hubbard systems. We study the optical conductivity sigma(omega) of insulating layered LaSrFeO_4 in the energy ran ge 0.5 - 5.5 eV from 15 K to 250 K by the use of spectroscopic ellipsometry in combination with transmittance measurements. A multipeak structure is observed in both sigma^a(omega) and sigma^c(omega). The layered structure gives rise to a pronounced anisotropy, thereby offering a means to disentangle Mott-Hubbard and charge-transfer absorption bands. We find strong evidence that the lowest dipole-allowed excitation in LaSrFeO_4 is of Mott-Hubbard type. This rather unexpected result can be attributed to Fe 3d - O 2p hybridization and in particular to the layered structure with the associated splitting of the e_g level. In general, Mott-Hubbard absorption bands may show a strong dependence on temperature. This is not the case in LaSrFeO_4, in agreement with the fact that spin-spin and orbital-orbital correlations between nearest neighbors do not vary strongly below room temperature in this compound with a high-spin 3d^5 configuration and a Neel temperature of T_N = 366 K.
We report angle-resolved photoelectron spectroscopy measurements of the quantum critical metal Sr3Ru2O7 revealing itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of < 6 meV, nearly three orders of magnitude l ower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from the hybridization of light and strongly renormalized, heavy quasiparticle bands. For the largest Fermi surface sheet we find a marked k-dependence of the renormalization and show that it correlates with the Ru 4d - O 2p hybridization.
120 - M. Klein , A. Nuber , H. Schwab 2011
We report on the results of a high-resolution angle-resolved photoemission (ARPES) study on the ordered surface alloy CePt5. The temperature dependence of the spectra show the formation of the coherent low-energy heavy-fermion band near the Fermi lev el. This experimental data is supported by a multi-band model calculation in the framework of the dynamical mean field theory (DMFT).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا