ترغب بنشر مسار تعليمي؟ اضغط هنا

A Derivation of the Colburn Analogy

38   0   0.0 ( 0 )
 نشر من قبل Trinh Khanh Tuoc
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.T. Trinh




اسأل ChatGPT حول البحث

This paper presents a derivation of the empirical Colburn analogy and discusses its implications. Key words: heat transfer, Colburn, j factor, turbulence, power law, log-law, wall layer

قيم البحث

اقرأ أيضاً

In this paper, the relation between skin friction and heat transfer along windward sides of blunt-nosed bodies in hypersonic flows is investigated. The self-similar boundary layer analysis is accepted to figure out the distribution of the ratio of sk in friction to heat transfer coefficients along the wall. It is theoretically obtained that the ratio depends linearly on the local slope angle of the wall surface, and an explicit analogy expression is presented for circular cylinders, although the linear distribution is also found for other nose shapes and even in gas flows with chemical reactions. Furthermore, based on the theoretical modelling of the second order shear and heat transfer terms in Burnett equations, a modified analogy is derived in the near continuum regime by considering the rarefied gas effects. And a bridge function is also constructed to describe the nonlinear analogy in the transition flow regime. At last, the direct simulation Monte Carlo method is used to validate the theoretical results. The general analogy, beyond the classical Reynolds analogy, is applicable to both flat plates and blunt-nosed bodies, in either continuous or rarefied hypersonic flows.
74 - Giulia Ceriotti 2019
We present and derive a novel double-continuum transport model based on pore-scale characteristics. Our approach relies on building a simplified unit cell made up of immobile and mobile continua. We employ a numerically resolved pore-scale velocity d istribution to characterize the volume of each continuum and to define the velocity profile in the mobile continuum. Using the simplified unit cell, we derive a closed form model, which includes two effective parameters that need to be estimated: a characteristic length scale and a ratio of waiting times RD that lumps the effect of stagnant regions and escape process. To calibrate and validate our model, we rely on a set of pore-scale numerical simulation performed on a 2D disordered segregated periodic porous medium considering different initial solute distributions. Using a Global Sensitivity Analysis, we explore the impact of the two effective parameters on solute concentration profiles and thereby define a sensitivity analysis driven criterion for model calibration. The latter is compared to a classical calibration approach. Our results show that, depending on the initial condition, the mass exchange process between mobile and immobile continua impact on solute profile shape significantly. By introducing parameter RD we obtain a flexible transport model capable of interpreting both symmetric and highly skewed solute concentration profiles. We show that the effectiveness of the calibration of the two parameters closely depends on the content of information of calibration dataset and the selected objective function whose definition can be supported by of the implementation of model sensitivity analysis. By relying on a sensitivity analysis driven calibration, we are able to provide a good interpretation of the concentration profile evolution independent of the given initial condition relying on a unique set of effective parameter values.
Scale-space energy density function, $E(mathbf{x}, mathbf{r})$, is defined as the derivative of the two-point velocity correlation. The function E describes the turbulent kinetic energy density of scale r at a location x and can be considered as the generalization of spectral energy density function concept to inhomogeneous flows. We derive the transport equation for the scale-space energy density function in compressible flows to develop a better understanding of scale-to-scale energy transfer and the degree of non-locality of the energy interactions. Specifically, the effects of variable-density and dilatation on turbulence energy dynamics are identified. It is expected that these findings will yield deeper insight into compressibility effects leading to improved models at all levels of closure for mass flux, density-variance, pressure-dilatation, pressure-strain correlation and dilatational dissipation processes.
A fluid dynamics video of the break up of a droplet of saliva is shown. First a viscoelastic filament is formed and than the blistering of this filament is shown. Finally, a flow induced phase separation takes place nanometer sized solid fiber remains that consist out of the biopolymers.
The ultimate goal of a sound theory of turbulence in fluids is to close in a rational way the Reynolds equations, namely to express the tensor of turbulent stress as a function of the time average of the velocity field. Based on the idea that dissipa tion in fully developed turbulence is by singular events resulting from an evolution described by the Euler equations, it has been recently observed that the closure problem is strongly restricted, and that it implies that the turbulent stress is a non local function in space of the average velocity field, a kind of extension of classical Boussinesq theory of turbulent viscosity. This leads to rather complex nonlinear integral equation(s) for the time averaged velocity field. This one satisfies some symmetries of the Euler equations. Such symmetries were used by Prandtl and Landau to make various predictions about the shape of the turbulent domain in simple geometries. We explore specifically the case of mixing layer for which the average velocity field only depends on the angle in the wedge behind the splitter plate. This solution yields a pressure difference between the two sides of the splitter which contributes to the lift felt by the plate. Moreover, because of the structure of the equations for the turbulent stress, one can satisfy the Cauchy-Schwarz inequalities, also called the realizability conditions, for this turbulent stress. Such realizability conditions cannot be satisfied with a simple turbulent viscosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا