ﻻ يوجد ملخص باللغة العربية
The random transitions of ion channels between conducting and non-conducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling fluctuations in the states of ion channels uses continuous-time Markov chains nonlinearly coupled to a differential equation for voltage. Beginning with the work of Fox and Lu, there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can preserve the stochastic dynamics of Markov chain models. We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effect on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case: the temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, and the subunit-based approaches do not correctly account for this structure. Our study therefore confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents the first evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells.
One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cel
We consider a pair of stochastic integrate and fire neurons receiving correlated stochastic inputs. The evolution of this system can be described by the corresponding Fokker-Planck equation with non-trivial boundary conditions resulting from the refr
We consider a classical space-clamped Hodgkin-Huxley model neuron stimulated by synaptic excitation and inhibition with conductances represented by Ornstein-Uhlenbeck processes. Using numerical solutions of the stochastic model system obtained by an
Gamma frequency oscillations (25-140 Hz), observed in the neural activities within many brain regions, have long been regarded as a physiological basis underlying many brain functions, such as memory and attention. Among numerous theoretical and comp
The Hodgkin-Huxley (HH) model is a powerful model to explain different aspects of spike generation in excitable cells. However, the HH model was proposed in 1952 when the real structure of the ion channel was unknown. It is now common knowledge that