ترغب بنشر مسار تعليمي؟ اضغط هنا

Aperture Synthesis Observations of CO, HCN, and 89GHz Continuum Emission toward NGC 604 in M 33: Sequential Star Formation Induced by Supergiant Hii region

98   0   0.0 ( 0 )
 نشر من قبل Rie Miura
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from new Nobeyama Millimeter Array observations of CO(1-0), HCN(1-0), and 89-GHz continuum emissions toward NGC 604, known as the supergiant H ii region in a nearby galaxy M 33. Our high spatial resolution images of CO emission allowed us to uncover ten individual molecular clouds that have masses of (0.8 -7.4) 10$^5$M$_{sun }$ and sizes of 5 -- 29 pc, comparable to those of typical Galactic giant molecular clouds (GMCs). Moreover, we detected for the first time HCN emission in the two most massive clouds and 89 GHz continuum emission at the rims of the H${alpha}$ shells. Three out of ten CO clouds are well correlated with the H${alpha}$ shells both in spatial and velocity domains, implying an interaction between molecular gas and the expanding H ii region. Furthermore, we estimated star formation efficiencies (SFEs) for each cloud from the 89-GHz and combination of H${alpha}$ and 24-${mu}$m data, and found that the SFEs decrease with increasing projected distance measured from the heart of the central OB star cluster in NGC 604, suggesting the radial changes in evolutionary stages of the molecular clouds in course of stellar cluster formation. Our results provide further support to the picture of sequential star formation in NGC604 initially proposed by Tosaki et al. (2007) with the higher spatially resolved molecular clouds, in which an isotropic expansion of the H ii region pushes gases outward and accumulates them to consecutively form dense molecular clouds, and then induces massive star formations.



قيم البحث

اقرأ أيضاً

Formation mechanism of a supergiant H II region NGC 604 is discussed in terms of collision of H I clouds in M33. An analysis of the archival H I data obtained with the Very Large Array (VLA) reveals complex velocity distributions around NGC 604. The H I clouds are composed of two velocity components separated by ~ 20 km s^-1 for an extent of ~ 700 pc, beyond the size of the the H II region. Although the H I clouds are not easily separated in velocity with some mixed component represented by merged line profiles, the atomic gas mass amounts to 6 x 10^6 M_Sol and 9 x 10^6 M_Sol for each component. These characteristics of H I gas and the distributions of dense molecular gas in the overlapping regions of the two velocity components suggest that the formation of giant molecular clouds and the following massive cluster formation have been induced by the collision of H I clouds with different velocities. Referring to the existence of gas bridging feature connecting M33 with M31 reported by large-scale HI surveys, the disturbed atomic gas possibly represent the result of past tidal interaction between the two galaxies, which is analogous to the formation of the R136 cluster in the LMC.
Does star formation proceed in the same way in large spirals such as the Milky Way and in smaller chemically younger galaxies? Earlier work suggests a more rapid transformation of H$_2$ into stars in these objects but (1) a doubt remains about the va lidity of the H$_2$ mass estimates and (2) there is currently no explanation for why star formation should be more efficient. M~33, a local group spiral with a mass $sim 10$% and a metallicity half that of the Galaxy, represents a first step towards the metal poor Dwarf Galaxies. We have searched for molecular clouds in the outer disk of M~33 and present here a set of detections of both $^{12}$CO and $^{13}$CO, including the only detections (for both lines) beyond the R$_{25}$ radius in a subsolar metallicity galaxy. The spatial resolution enables mass estimates for the clouds and thus a measure of the $N({rm H}_2) / I_{rm CO}$ ratio, which in turn enables a more reliable calculation of the H$_2$ mass. Our estimate for the outer disk of M~33 is $N({rm H}_2) / I_{rm CO(1-0)} sim 5 times 10^{20} ,{rm cm^{-2}/(K{rm km s^{-1}})}$ with an estimated uncertainty of a factor $le 2$. While the $^{12/13}$CO line ratios do not provide a reliable measure of $N({rm H}_2) / I_{rm CO}$, the values we find are slightly greater than Galactic and corroborate a somewhat higher $N({rm H}_2) / I_{rm CO}$ value. Comparing the CO observations with other tracers of the interstellar medium, no reliable means of predicting where CO would be detected was identified. In particular, CO detections were often not directly on local HI or FIR or H$alpha$ peaks, although generally in regions with FIR emission and high HI column density. The results presented here provide support for the quicker transformation of H$_2$ into stars in M~33 than in large local universe spirals.
We present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC 1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1 -0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 {mu}m dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.
We present the results of Herschel HOBYS photometric mapping combined with BIMA observations and additional archival data, and perform an in-depth study of the evolutionary phases of the star-forming clumps in W 48A and their surroundings. Age estima tes for the compact sources were derived from bolometric luminosities and envelope masses, which were obtained from the dust continuum emission, and agree within an order of magnitude with age estimates from molecular line and radio data. The clumps in W 48A are linearly aligned by age (east-old to west-young): we find a ultra compact (UC) HII region, a young stellar object (YSO) with class II methanol maser emission, a YSO with a massive outflow, and finally the NH_2D prestellar cores from Pillai et al. This remarkable positioning reflects the (star) formation history of the region. We find that it is unlikely that the star formation in the W 48A molecular cloud was triggered by the UCHII region and discuss the Aquila supershell expansion as a mayor influence on the evolution of W 48A. We conclude that the combination of Herschel continuum data with interferometric molecular line and radio continuum data is important to derive trustworthy age estimates and interpret the origin of large scale structures through kinematic information.
The mass segregation of stellar clusters could be primordial rather than dynamical. Despite the abundance of studies of mass segregation for stellar clusters, those for stellar progenitors are still scarce, so the question on the origin and evolution of mass segregation is still open. Our goal is to characterize the structure of the NGC 2264 molecular cloud and compare the populations of clumps and young stellar objects (YSOs) in this region whose rich YSO population has shown evidence of sequential star formation. We separated the Herschel column density map of NGC 2264 in three subregions and compared their cloud power spectra using a multiscale segmentation technique. We identified in the whole NGC 2264 cloud a population of 256 clumps with typical sizes of ~0.1 pc and masses ranging from 0.08 Msun to 53 Msun. Although clumps have been detected all over the cloud, the central subregion of NGC 2264 concentrates most of the massive, bound clumps. The local surface density and the mass segregation ratio indeed indicate a strong degree of mass segregation for the 15 most massive clumps, with a median $Sigma_6$ three time that of the whole clumps population and $Lambda_{MSR}$ about 8. We showed that this cluster of massive clumps is forming within a high-density cloud ridge, itself formed and probably still fed by the high concentration of gas observed on larger scales in the central subregion. The time sequence obtained from the combined study of the clump and YSO populations in NGC 2264 suggests that the star formation started in the northern subregion, that it is now actively developing at the center and will soon start in the southern subregion. Taken together, the cloud structure and the clump and YSO populations in NGC 2264 argue for a dynamical scenario of star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا