ترغب بنشر مسار تعليمي؟ اضغط هنا

Duality and canonical extensions for stably compact spaces

161   0   0.0 ( 0 )
 نشر من قبل Sam van Gool
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sam van Gool




اسأل ChatGPT حول البحث

We construct a canonical extension for strong proximity lattices in order to give an algebraic, point-free description of a finitary duality for stably compact spaces. In this setting not only morphisms, but also objects may have distinct pi- and sigma-extensions.



قيم البحث

اقرأ أيضاً

We prove that the semigroup operation of a topological semigroup $S$ extends to a continuous semigroup operation on its the Stone-v{C}ech compactification $beta S$ provided $S$ is a pseudocompact openly factorizable space, which means that each map $ f:Sto Y$ to a second countable space $Y$ can be written as the composition $f=gcirc p$ of an open map $p:Xto Z$ onto a second countable space $Z$ and a map $g:Zto Y$. We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.
Extending the Stone Duality Theorem, we prove two duality theorems for the category ZHaus of zero-dimensional Hausdorff spaces and continuous maps. Both of them imply easily the Tarski Duality Theorem, as well as two new duality theorems for the cate gory EDTych of extremally disconnected Tychonoff spaces and continuous maps. Also, we describe two categories which are dually equivalent to the category ZComp of zero-dimensional Hausdorff compactifications of zero-dimensional Hausdorff spaces and obtain as a corollary the Dwinger Theorem about zero-dimensional compactifications of a zero-dimensional Hausdorff space.
We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of clo sed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads.
140 - Mai Gehrke 2013
We establish a topological duality for bounded lattices. The two main features of our duality are that it generalizes Stone duality for bounded distributive lattices, and that the morphisms on either side are not the standard ones. A positive consequ ence of the choice of morphisms is that those on the topological side are functional. Towards obtaining the topological duality, we develop a universal construction which associates to an arbitrary lattice two distributive lattice envelopes with a Galois connection between them. This is a modification of a construction of the injective hull of a semilattice by Bruns and Lakser, adjusting their concept of admissibility to the finitary case. Finally, we show that the dual spaces of the distributive envelopes of a lattice coincide with completions of quasi-uniform spaces naturally associated with the lattice, thus giving a precise spatial meaning to the distributive envelopes.
Applying a general categorical construction for the extension of dualities, we present a new proof of the Fedorchuk duality between the category of compact Hausdorff spaces with their quasi-open mappings and the category of complete normal contact al gebras with suprema-preserving Boolean homomorphisms which reflect the contact relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا