ﻻ يوجد ملخص باللغة العربية
In [7], a notion of constant scalar curvature metrics on piecewise flat manifolds is defined. Such metrics are candidates for canonical metrics on discrete manifolds. In this paper, we define a class of vertex transitive metrics on certain triangulations of $mathbb{S}^3$; namely, the boundary complexes of cyclic polytopes. We use combinatorial properties of cyclic polytopes to show that, for any number of vertices, these metrics have constant scalar curvature.
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics
Extending Aubins construction of metrics with constant negative scalar curvature, we prove that every $n$-dimensional closed manifold admits a Riemannian metric with constant negative scalar-Weyl curvature, that is $R+t|W|, tinmathbb{R}$. In particul
We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the link of the singular set.
We use PDE methods as developed for the Liouville equation to study the existence of conformal metrics with prescribed singularities on surfaces with boundary, the boundary condition being constant geodesic curvature. Our first result shows that a di
We first present a warped product manifold with boundary to show the non-uniqueness of the positive constant scalar curvature and positive constant boundary mean curvature equation. Next, we construct a smooth counterexample to show that the compactn