ترغب بنشر مسار تعليمي؟ اضغط هنا

YBa$_2$Cu$_3$O$_7$/La$_{0.7}$Ca$_{0.3}$MnO$_3$ bilayers: Interface coupling and electric transport properties

80   0   0.0 ( 0 )
 نشر من قبل Robert Werner
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heteroepitaxially grown bilayers of ferromagnetic La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) on top of superconducting YBa$_2$Cu$_3$O$_7$ (YBCO) thin films were investigated by focusing on electric transport properties as well as on magnetism and orbital occupation at the interface. Transport measurements on YBCO single layers and on YBCO/LCMO bilayers, with different YBCO thickness $d_Y$ and constant LCMO thickness $d_L=50$,nm, show a significant reduction of the superconducting transition temperature $T_c$ only for $d_Y<10$,nm,with only a slightly stronger $T_c$ suppression in the bilayers, as compared to the single layers. X-ray magnetic circular dichroism (XMCD) measurements confirm recently published data of an induced magnetic moment on the interfacial Cu by the ferromagnetically ordered Mn ions, with antiparallel alignment between Cu and Mn moments. However, we observe a significantely larger Cu moment than previously reported, indicating stronger coupling between Cu and Mn at the interface. This in turn could result in an interface with lower transparency, and hence smaller spin diffusion length, that would explain our electric transport data, i.e.smaller $T_c$ suppression. Moreover, linear dichroism measurements did not show any evidence for orbital reconstruction at the interface, indicating that a large change in orbital occupancies through hybridization is not necessary to induce a measurable ferromagnetic moment on the Cu atoms.

قيم البحث

اقرأ أيضاً

Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectrosc opy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa$_2$ Cu$_3$ O$_{7-x}$ (YBCO) superconductor when it is grown on top of ferromagnetic La$_{0.7}$ Ca$_{0.3}$ MnO$_3$ (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La$_{0.7}$ Ca$_{0.3}$ interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO$_2$ plane at the La$_{0.7}$ Ca$_{0.3}$ and MnO$_2$ terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.
With dc magnetisation and polarized neutron reflectometry we studied the ferromagnetic response of YBa$_2$Cu$_3$O$_7$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) multilayers that are grown with pulsed laser deposition. We found that whereas for certain g rowth conditions (denoted as A-type) the ferromagnetic moment of the LCMO layer is strongly dependent on the structural details of the YBCO layer on which it is deposited, for others (B-type) the ferromagnetism of LCMO is much more robust. Both kinds of multilayers are of similar structural quality, but electron energy-loss spectroscopy (EELS) studies with a scanning transmission electron microscope reveal an enhanced average Mn oxidation state of +3.5 for the A-type as opposed to the B-type samples for which it is close to the nominal value of +3.33. The related, additional hole doping of the A-type LCMO layers, which likely originates from La and/or Mn vacancies, can explain their fragile ferromagnetic order since it places them close to the boundary of the ferromagnetic order at which even weak perturbations can induce an antiferromagnetic or glassy state. On the other hand, we show that the B-type samples allow one to obtain YBCO/LCMO heterostructures with very thick YBCO layers and, yet, strongly ferromagnetic LCMO layers.
We report a spectral ellipsometry study of multilayers composed of superconducting YBa$_2$Cu$_3$O$_{6+delta}$ (YBCO) and ferromagnetic La$_{0.7}$Ca$_{0.3}$MnO$_3$ in the spectral range of 0.7 - 6.5 eV. With increasing YBCO sublayer thickness, the opt ical spectral weight is enhanced at photon energies of 1.5 - 3.5 eV. The spectral weight enhancement is proportional to the number of interfaces of each multilayer sample, indicating its association with the interfacial electronic structure. Based on calculations in the framework of a multilayer model, we find that the shape of the interface-induced spectral weight is consistent with transfer of hole-carriers from YBCO to LCMO. Our results imply that the holes that are transferred across the interfaces accumulate in the LCMO layers, rather than being pinned by interfacial defects or annihilated by electron donors such as oxygen vacancies. Optical spectroscopy can thus serve as a non-destructive probe of charge transfer across buried interfaces in metal-oxide heterostructures.
We designed, fabricated and tested short one dimensional arrays of masked ion-irradiated YBa$_2$Cu$_3$O$_7$ Josephson junctions (JJ) embedded into log-periodic spiral antennas. Our arrays consist of 4 or 8 junctions separated either by 960~nm or 80~n m long areas of undamaged YBCO. Samples with distanced junctions and with closely spaced junctions showed qualitatively different behaviors. Well separated arrays demonstrated giant Shapiro steps in the hundreds-GHz band at 66K and were tested as Josephson mixers with improved impedance matching. All closely spaced arrays behaved as one junction with a lower superconducting transition temperature, hence forming a single weak link on distances up to 880~nm. Such design opens a new way to increase the I$_{c}$R$_{N}$ product of ion-irradiated junctions and we speculate that the phenomena and physics behind it might be similar to the so-called giant Josephson coupling observed in cuprates.
We present a study of interlayer coupling and proximity effects in a La$_{0.66}$Ca$_{0.33}$MnO$_3$(10 nm)/YBa$_2$Cu$_3$O$_7$(10 nm) superlattice. Using element-sensitive x-ray probes, the magnetic state of Mn can be probed without seeing the strong d iamagnetism of the superconductor, which makes this approach ideal to study changes in the magnetic properties across the superconducting transition. By a combined experiment using {it in situ} transport measurements during polarized soft x-ray measurements, we were able to see no noticeable influence of the superconducting state on the magnetic properties and no evidence for magnetic coupling across a 10 nm YBCO layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا