ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic evolution of quantum walks with random coin

232   0   0.0 ( 0 )
 نشر من قبل Andre Ahlbrecht
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the asymptotic position distribution of general quantum walks on a lattice, including walks with a random coin, which is chosen from step to step by a general Markov chain. In the unitary (i.e., non-random) case, we allow any unitary operator, which commutes with translations, and couples only sites at a finite distance from each other. For example, a single step of the walk could be composed of any finite succession of different shift and coin operations in the usual sense, with any lattice dimension and coin dimension. We find ballistic scaling, and establish a direct method for computing the asymptotic distribution of position divided by time, namely as the distribution of the discrete time analog of the group velocity. In the random case, we let a Markov chain (control process) pick in each step one of finitely many unitary walks, in the sense described above. In ballistic order we find a non-random drift, which depends only on the mean of the control process and not on the initial state. In diffusive scaling the limiting distribution is asymptotically Gaussian, with a covariance matrix (diffusion matrix) depending on momentum. The diffusion matrix depends not only on the mean but also on the transition rates of the control process. In the non-random limit, i.e., when the coins chosen are all very close, or the transition rates of the control process are small, leading to long intervals of ballistic evolution, the diffusion matrix diverges. Our method is based on spatial Fourier transforms, and the first and second order perturbation theory of the eigenvalue 1 of the transition operator for each value of the momentum.



قيم البحث

اقرأ أيضاً

Quantum walks subject to decoherence generically suffer the loss of their genuine quantum feature, a quadratically faster spreading compared to classical random walks. This intuitive statement has been verified analytically for certain models and is also supported by numerical studies of a variety of examples. In this paper we analyze the long-time behavior of a particular class of decoherent quantum walks, which, to the best of our knowledge, was only studied at the level of numerical simulations before. We consider a local coin operation which is randomly and independently chosen for each time step and each lattice site and prove that, under rather mild conditions, this leads to classical behavior: With the same scaling as needed for a classical diffusion the position distribution converges to a Gaussian, which is independent of the initial state. Our method is based on non-degenerate perturbation theory and yields an explicit expression for the covariance matrix of the asymptotic Gaussian in terms of the randomness parameters.
132 - Martin Stefanak , Igor Jex 2014
The control of quantum walk is made particularly transparent when the initial state is expressed in terms of the eigenstates of the coin operator. We show that the group-velocity density acquires a much simpler form when expressed in this basis. This allows us to obtain a much deeper understanding of the role of the initial coin state on the dynamics of quantum walks and control it. We find that the eigenvectors of the coin result in an extremal regime of a quantum walk. The approach is illustrated on two examples of quantum walks on a line.
198 - Miquel Montero 2014
In this paper we unveil some features of a discrete-time quantum walk on the line whose coin depends on the temporal variable. After considering the most general form of the unitary coin operator, we focus on the role played by the two phase factors that one can incorporate there, and show how both terms influence the evolution of the system. A closer analysis reveals that the probabilistic properties of the motion of the walker remain unaltered when the update rule of these phases is chosen adequately. This invariance is based on a symmetry with consequences not yet fully explored.
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional disc rete-time QW and discuss basic steps in detail by incorporating the most general coin operator. We investigate the impact of each parameter of the general coin operator on the probability distribution of the quantum walker. We show that by tuning the parameters of the general coin, one can regulate the probability distribution of the walker. We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator. The study conducted on general coin operator also includes the popular coins -- Hadamard, Grover, and Fourier coins.
122 - C. Cedzich , R. F. Werner 2015
We provide an explanation of recent experimental results of Xue et al., where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for electric walks with a space-depende nt, rather than a time-dependent coin, we provide a full explanation of the observations of Xue et al. We extend the analysis from periodic time-dependence to quasi-periodic behaviour with periods incommensurate to the step size. Spectral analysis, one of the principal tools for the study of electric walks, fails for time-dependent systems, but we find qualitative propagation behaviour of the time-dependent system in close analogy to the electric case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا