ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar properties of z ~ 1 Lyman-break galaxies from ACS slitless grism spectra

118   0   0.0 ( 0 )
 نشر من قبل Kim Nilsson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kim K. Nilsson




اسأل ChatGPT حول البحث

Lyman-break galaxies are now regularly found in the high redshift Universe by searching for the break in the galaxy spectrum caused by the Lyman-limit redshifted into the optical or even near-IR. At lower redshift, this break is covered by the GALEX UV channels and small samples of z ~ 1 LBGs have been presented in the literature. Here we give results from fitting the spectral energy distributions of a small sub-set of low redshift LBGs and demonstrate the advantage of including photometric points derived from HST ACS slitless grism observations. The results show these galaxies to have very young, star forming populations, while still being massive and dusty. LBGs at low and high redshift show remarkable similarities in their properties, indicating that the LBG selection method picks similar galaxies throughout the Universe.



قيم البحث

اقرأ أيضاً

174 - I. Oteo , A. Bongiovanni , J. Cepa 2013
We take advantage of the exceptional photometric coverage provided by the combination of GALEX data in the UV and the ALHAMBRA survey in the optical and near-IR to analyze the physical properties of a sample of 1225 GALEX-selected Lyman break galaxie s (LBGs) at $0.8 lesssim z lesssim 1.2$ located in the COSMOS field. This is the largest sample of LBGs studied at that redshift range so far. According to a spectral energy distribution (SED) fitting with synthetic stellar population templates, we find that LBGs at $z sim 1$ are mostly young galaxies with a median age of 341 Myr and have intermediate dust attenuation, $ < E_s (B-V) > sim 0.20$. Due to their selection criterion, LBGs at $z sim 1$ are UV-bright galaxies and have high dust-corrected total SFR, with a median value of 16.9 $M_odot {rm yr}^{-1}$. Their median stellar mass is $log{left(M_*/M_odot right)} = 9.74$. We obtain that the dust-corrected total SFR of LBGs increases with stellar mass and the specific SFR is lower for more massive galaxies. Only 2% of the galaxies selected through the Lyman break criterion have an AGN nature. LBGs at $z sim 1$ are mostly located over the blue cloud of the color-magnitude diagram of galaxies at their redshift, with only the oldest and/or the dustiest deviating towards the green valley and red sequence. Morphologically, 69% of LBGs are disk-like galaxies, with the fraction of interacting, compact, or irregular systems being much lower, below 12%. LBGs have a median effective radius of 2.5 kpc and bigger galaxies have higher total SFR and stellar mass. Comparing to their high-redshift analogues, we find evidence that LBGs at lower redshifts are bigger, redder in the UV continuum, and have a major presence of older stellar populations in their SEDs. However, we do not find significant difference in the distributions of stellar mass or dust attenuation.
We present results of optical spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at $z sim 5$ in the region including the GOODS-N and the J0053+1234 region by using GMOS-N and GMOS-S, respectively. Among 25 candidates, five objec ts are identified to be at $z sim 5$ (two of them were already identified by an earlier study) and one object very close to the color-selection window turned out to be a foreground galaxy. With this spectroscopically identified sample and those from previous studies, we derived the lower limits on the number density of bright ($M_{UV}<-22.0$ mag) LBGs at $z sim 5$. These lower limits are comparable to or slightly smaller than the number densities of UV luminosity functions (UVLFs) that show the smaller number density among $z sim 5$ UVLFs in literature. However, by considering that there remain many LBG candidates without spectroscopic observations, the number density of bright LBGs is expected to increase by a factor of two or more. The evidence for the deficiency of UV luminous LBGs with large Ly$alpha$ equivalent widths was reinforced. We discuss possible causes for the deficiency and prefer the interpretation of dust absorption.
For the first time, we study the evolution of the stellar mass-size relation for star-forming galaxies from z ~ 4 to z ~ 7 from Hubble-WFC3/IR camera observations of the HUDF and Early Release Science (ERS) field. The sizes are measured by determinin g the best fit model to galaxy images in the rest-frame 2100 AA with the stellar masses estimated from SED fitting to rest-frame optical (from Spitzer/IRAC) and UV fluxes. We show that the stellar mass-size relation of Lyman-break galaxies (LBGs) persists, at least to z ~ 5, and the median size of LBGs at a given stellar mass increases towards lower redshifts. For galaxies with stellar masses of 9.5<Log(M*/Msun)<10.4 sizes evolve as $(1+z)^{-1.20pm0.11}$. This evolution is very similar for galaxies with lower stellar masses of 8.6<Log(M*/Msun)<9.5 which is $r_{e} propto (1+z)^{-1.18pm0.10}$, in agreement with simple theoretical galaxy formation models at high z. Our results are consistent with previous measurements of the LBGs mass-size relation at lower redshifts (z ~ 1-3).
We analyze the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at z=1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST/WFC3 observations cover about 50 sq. arcmin in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z=1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope (beta) is redder than at high redshift (z>3), where LBGs are less dusty; (3) on average, LBGs at z=1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities (0.1L*<~L<~2.5L*), though their median values are similar within 1-sigma uncertainties. This could imply that identical dropout selection technique, at all redshifts, find physically similar galaxies; and (4) stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of ~0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of ~0.90. These relations hold true --- within luminosities probed in this study --- for LBGs from z~1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z~2, but to avoid any selection biases, and for direct comparison with LBGs at z>3, a true Lyman break selection at z~2 is essential. The future HST UV surveys, both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.
153 - R. A. Overzier , X. Shu , W. Zheng 2009
We present new information on galaxies in the vicinity of luminous radio galaxies and quasars at z=4,5,6. These fields were previously found to contain overdensities of Lyman Break Galaxies (LBGs) or spectroscopic Lyman alpha emitters. We use HST and Spitzer data to infer stellar masses, and contrast our results with large samples of LBGs in more average environments as probed by the Great Observatories Origins Deep Survey (GOODS). The following results were obtained. First, LBGs in both overdense regions and in the field at z=4-5 lie on a very similar sequence in a z-[3.6] versus [3.6] color-magnitude diagram. This is interpreted as a sequence in stellar mass (log[M*/Msun] = 9-11) in which galaxies become increasingly red due to dust and age as their star formation rate (SFR) increases. Second, the two radio galaxies are among the most massive objects (log[M*/Msun]~11) known to exist at z~4-5, and are extremely rare based on the low number density of such objects as estimated from the ~25x larger area GOODS survey. We suggest that the presence of these massive galaxies and supermassive black holes has been boosted through rapid accretion of gas or merging inside overdense regions. Third, the total stellar mass found in the z=4 ``proto-cluster TN1338 accounts for <30% of the stellar mass on the cluster red sequence expected to have formed at z>4, based on a comparison with the massive X-ray cluster Cl1252 at z=1.2. Although future near-infrared observations should determine whether any massive galaxies are currently being missed, one possible explanation for this mass difference is that TN1338 evolves into a smaller cluster than Cl1252. This raises the interesting question of whether the most massive protocluster regions at z>4 remain yet to be discovered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا