ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser and Microwave Excitations of Rabi Oscillations of a Single Nitrogen-Vacancy Electron Spin in Diamond

45   0   0.0 ( 0 )
 نشر من قبل Xinyu Pan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A collapse and revival shape of Rabi oscillations of a single Nitrogen-Vacancy (NV) center electron spin has been observed in diamond at room temperature. Because of hyperfine interaction between the host 14N nuclear spin and NV center electron spin, different orientation of the 14N nuclear spin leads to a triplet splitting of the transition between the ground ms=0 and excited states ms=1. Microwave can excite the three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations. This result provides an innovative view of electron spin oscillations in diamond.

قيم البحث

اقرأ أيضاً

The neutral charge state plays an important role in quantum information and sensing applications based on nitrogen-vacancy centers. However, the orbital and spin dynamics remain unexplored. Here, we use resonant excitation of single centers to direct ly reveal the fine structure, enabling selective addressing of spin-orbit states. Through pump-probe experiments, we find the orbital relaxation time (430ns at 4.7K) and measure its temperature-dependence up to 11.8K. Finally we reveal the spin relaxation time (1.5s), and realize projective high-fidelity single-shot readout of the spin state ($geq98%$).
423 - Peng Qian , Xue Lin , Feifei Zhou 2021
Machine learning is a powerful tool in finding hidden data patterns for quantum information processing. Here, we introduce this method into the optical readout of electron-spin states in diamond via single-photon collection and demonstrate improved r eadout precision at room temperature. The traditional method of summing photon counts in a time gate loses all the timing information crudely. We find that changing the gate width can only optimize the contrast or the state variance, not both. In comparison, machine learning adaptively learns from time-resolved fluorescence data, and offers the optimal data processing model that elaborately weights each time bin to maximize the extracted information. It is shown that our method can repair the processing result from imperfect data, reducing 7% in spin readout error while optimizing the contrast. Note that these improvements only involve recording photon time traces and consume no additional experimental time, they are thus robust and free. Our machine learning method implies a wide range of applications in precision measurement and optical detection of states.
218 - A. Jarmola , A. Berzins , J. Smits 2015
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV $^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
275 - H. Y. Chen , S. A. Bhave , 2020
Using a high quality factor 3 GHz bulk acoustic wave resonator device, we demonstrate the acoustically driven single quantum spin transition ($left|m_{s}=0right>leftrightarrowleft|pm1right>$) for diamond NV centers and characterize the corresponding stress susceptibility. A key challenge is to disentangle the unintentional magnetic driving field generated by device current from the intentional stress driving within the device. We quantify these driving fields independently using Rabi spectroscopy before studying the more complicated case in which both are resonant with the single quantum spin transition. By building an equivalent circuit model to describe the devices current and mechanical dynamics, we quantitatively model the experiment to establish their relative contributions and compare with our results. We find that the stress susceptibility of the NV center spin single quantum transition is around $sqrt{2}(0.5pm0.2)$ times that for double quantum transition ($left|+1right>leftrightarrowleft|-1right>$). Although acoustic driving in the double quantum basis is valuable for quantum-enhanced sensing applications, double quantum driving lacks the ability to manipulate NV center spins out of the $left|m_{s}=0right>$ initialization state. Our results demonstrate that efficient all-acoustic quantum control over NV centers is possible, and is especially promising for sensing applications that benefit from the compact footprint and location selectivity of acoustic devices.
We theoretically analyse the cooling dynamics of a high-Q mode of a mechanical resonator, when the structure is also an optical cavity and is coupled with a NV center. The NV center is driven by a laser and interacts with the cavity photon field and with the strain field of the mechanical oscillator, while radiation pressure couples mechanical resonator and cavity field. Starting from the full master equation we derive the rate equation for the mechanical resonators motion, whose coefficients depend on the system parameters and on the noise sources. We then determine the cooling regime, the cooling rate, the asymptotic temperatures, and the spectrum of resonance fluorescence for experimentally relevant parameter regimes. For these parameters, we consider an electronic transition, whose linewidth allows one to perform sideband cooling, and show that the addition of an optical cavity in general does not improve the cooling efficiency. We further show that pure dephasing of the NV centers electronic transitions can lead to an improvement of the cooling efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا