ﻻ يوجد ملخص باللغة العربية
This paper describes a new measurement of the flux ratio of positive and negative muons from cosmic-ray interactions in the atmosphere, using data collected by the CMS detector at ground level and in the underground experimental cavern. The excellent performance of the CMS detector allowed detection of muons in the momentum range from 3 GeV to 1 TeV. For muon momenta below 100 GeV the flux ratio is measured to be a constant $1.2766 pm 0.0032(stat) pm 0.0032(syst)$, the most precise measurement to date. At higher momenta an increase in the charge asymmetry is observed, in agreement with models of muon production in cosmic-ray showers and compatible with previous measurements by deep-underground experiments.
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run.
The OPERA detector, designed to search for $ u_{mu} to u_{tau}$ oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector w
The charge ratio ${k equiv mu^+/mu^-}$ for atmospheric muons has been measured using Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have the energy at the
A new measurement of the momentum spectra of both positive and negative muons as function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on the 19-20th of July 1994 and
The charge ratio, $R_mu = N_{mu^+}/N_{mu^-}$, for cosmogenic multiple-muon events observed at an under- ground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from Au