ﻻ يوجد ملخص باللغة العربية
Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of sqrt{s}=500 GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{pm} to the light quarks. The observed electron and positron yields were used to estimate W^pm boson production cross sections equal to sigma(pp to W^+ X) times BR(W^ to u_e)= 144.1+/-21.2(stat)^{+3.4}_{-10.3}(syst) +/- 15%(norm) pb, and sigma(pp to W^{-}X) times BR(W^to e^-bar{ u_e}) = 31.7+/-12.1(stat)^{+10.1}_{-8.2}(syst)+/-15%(norm) pb.
We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass
We have measured the cross section and single spin asymmetries from forward $W^{pm}rightarrowmu^{pm} u$ production in longitudinally polarized $p$$+$$p$ collisions at $sqrt{s}=510$ GeV using the PHENIX detector at the Relativistic Heavy Ion Collider.
We report the first measurement of transverse single-spin asymmetries in $J/psi$ production from transversely polarized $p+p$ collisions at $sqrt{s} = 200$ GeV with data taken by the PHENIX experiment in 2006 and 2008. The measurement was performed o
We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading ord
The production of $W^{pm}$ bosons in longitudinally polarized $vec{p}+vec{p}$ collisions at RHIC provides a new means of studying the spin-flavor asymmetries of the proton sea quark distributions. Details of the $W^{pm}$ event selection in the $e^{pm