ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster mass dependent truncation of the upper IMF: evidence from observations and simulations

157   0   0.0 ( 0 )
 نشر من قبل Thomas Maschberger
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We attempt to evaluate whether the integrated galactic IMF (IGIMF) is expected to be steeper than the IMF within individual clusters through direct evaluation of whether there is a systematic dependence of maximum stellar mass on cluster mass. We show that the result is sensitive to observational selection biases and requires an accurate knowledge of cluster ages, particularly in more populous clusters. At face value there is no compelling evidence for non-random selection of stellar masses in low mass clusters but there is arguably some evidence that the maximum stellar mass is anomalously low (compared with the expectations of random mass selection) in clusters containing more than several thousand stars. Whether or not this effect is then imprinted on the IGIMF then depends on the slope of the cluster mass function. We argue that a more economical approach to the problem would instead involve direct analysis of the upper IMF in clusters using statistical tests for truncation of the mass function. When such an approach is applied to data from hydrodynamic simulations we find evidence for truncated mass functions even in the case of simulations without feedback.

قيم البحث

اقرأ أيضاً

54 - Genaro Suarez 2019
The stellar initial mass function (IMF) is an essential input for many astrophysical studies but only in a few cases it has been determined over the whole cluster mass range, limiting the conclusions about its nature. The 25 Orionis group (25 Ori) is an excellent laboratory to investigate the IMF across the entire mass range of the population, from planetary-mass objects to intermediate/high-mass stars. We combine new deep optical photometry with optical and near-infrared data from the literature to select 1687 member candidates covering a 1.1$^circ$ radius area in 25 Ori. With this sample we derived the 25 Ori system IMF from 0.012 to 13.1 $M_odot$. This system IMF is well described by a two-segment power-law with $Gamma=-0.74pm0.04$ for $m<0.4 M_odot$ and $Gamma=1.50pm0.11$ for $mge0.4 M_odot$. It is also well described over the whole mass range by a tapered power-law function with $Gamma=1.10pm0.09$, $m_p=0.31pm0.03$ and $beta=2.11pm0.09$. The best lognormal representation of the system IMF has $m_c=0.31pm0.04$ and $sigma=0.46pm0.05$ for $m<1 M_odot$. This system IMF does not present significant variations with the radii. We compared the resultant system IMF as well as the BD/star ratio of $0.16pm0.03$ we estimated for 25 Ori with that of other stellar regions with diverse conditions and found no significant discrepancies. These results support the idea that general star formation mechanisms are probably not strongly dependent to environmental conditions. We found that the substellar and stellar objects in 25 Ori have similar spatial distributions and confirmed that 25 Ori is a gravitationally unbound stellar association.
81 - E. Dalessandro 2015
We present the first evidence of clear signatures of tidal distortions in the density distribution of the fascinating open cluster NGC 6791. We used deep and wide-field data obtained with the Canada-France-Hawaii-Telescope covering a 2x2 square degre es area around the cluster. The two-dimensional density map obtained with the optimal matched filter technique shows a clear elongation and an irregular distribution starting from ~300 from the cluster center. At larger distances, two tails extending in opposite directions beyond the tidal radius are also visible. These features are aligned to both the absolute proper motion and to the Galactic center directions. Moreover, other overdensities appear to be stretched in a direction perpendicular to the Galactic plane. Accordingly to the behaviour observed in the density map, we find that both the surface brightness and the star count density profiles reveal a departure from a King model starting from ~600 from the center. These observational evidence suggest that NGC 6791 is currently experiencing mass loss likely due to gravitational shocking and interactions with the tidal field. We use this evidence to argue that NGC 6791 should have lost a significant fraction of its original mass. A larger initial mass would in fact explain why the cluster survived so long. Using available recipes based on analytic studies and N-body simulations, we derived the expected mass loss due to stellar evolution and tidal interactions and estimated the initial cluster mass to be M_ini=(1.5-4) x 10^5 M_sun.
Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich cluster s, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations agrees well in trend and evolution with the observational results obtained from two data samples characterised by a wide range of masses and a large redshift coverage. We find that the iron abundance in the cluster core ($r<0.1R_{500}$) does not correlate with the temperature nor presents a significant evolution. The scale invariance is confirmed when the metallicity is related directly to the total mass. The slope of the best-fitting relations is shallow ($betasim-0.1$) in the innermost regions ($r<0.5R_{500}$) and consistent with zero outside. We investigate the impact of the AGN feedback and find that it plays a key role in producing a constant value of the outskirts metallicity from groups to clusters. This finding additionally supports the picture of early enrichment.
Strong gravitational lensing is a powerful tool to measure cosmological parameters and to study galaxy evolution mechanisms. However, quantitative strong lensing studies often require mock observations. To capture the full complexity of galaxies, the lensing galaxy is often drawn from high resolution, dark matter only or hydro-dynamical simulations. These have their own limitations, but the way we use them to emulate mock lensed systems may also introduce significant artefacts. In this work we identify and explore the specific impact of mass truncation on simulations of strong lenses by applying different truncation schemes to a fiducial density profile with conformal isodensity contours. Our main finding is that improper mass truncation can introduce undesired artificial shear. The amplitude of the spurious shear depends on the shape and size of the truncation area as well as on the slope and ellipticity of the lens density profile. Due to this effect, the value of H0 or the shear amplitude inferred by modelling those systems may be biased by several percents. However, we show that the effect becomes negligible provided that the lens projected map extends over at least 50 times the Einstein radius.
68 - Mark Gieles 2005
We present the luminosity function (LF) of star clusters in M51 based on HST/ACS observations taken as part of the Hubble Heritage project. The clusters are selected based on their size and with the resulting 5990 clusters we present one of the large st cluster samples of a single galaxy. We find that the LF can be approximated with a double power-law distribution with a break around M_V = -8.9. On the bright side the index of the power-law distribution is steeper (a = 2.75) than on the faint-side (a = 1.93), similar to what was found earlier for the ``Antennae galaxies. The location of the bend, however, occurs about 1.6 mag fainter in M51. We confront the observed LF with the model for the evolution of integrated properties of cluster populations of Gieles et al., which predicts that a truncated cluster initial mass function would result in a bend in, and a double power-law behaviour of, the integrated LF. The combination of the large field-of view and the high star cluster formation rate of M51 make it possible to detect such a bend in the LF. Hence, we conclude that there exists a fundamental upper limit to the mass of star clusters in M51. Assuming a power-law cluster initial mass function with exponentional cut-off of the form NdM ~ M^-b * exp(-M/M_C)dM, we find that M_C = 10^5 M_sun. A direct comparison with the LF of the ``Antennae suggests that there M_C = 4*10^5 M_sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا