ﻻ يوجد ملخص باللغة العربية
We report our detailed investigation of high-resolution imaging using secondary electrons (SE) with a subnanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular-dark-field (ADF) images simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we study the SE image intensity and contrast as a function of applied bias, atomic number, crystal tilt and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. Possible mechanisms for atomicscale SE imaging are proposed. The ability to image both the surface and bulk of a sample at atomic scale is unprecedented, and could revolutionize the field of electron microscopy and imaging.
Quantitative differential phase contrast imaging of materials in atomic-resolution scanning transmission electron microscopy using segmented detectors is limited by various factors, including coherent and incoherent aberrations, detector positioning
In this study, we have used a Zr-Nb alloy containing well-defined nano-precipitates as a model material in which to study imaging contrast
Ultra-fast transmission electron microscopy (UTEM) combines sub-picosecond time-resolution with the versatility of TEM spectroscopies. It allows one to study the dynamics of materials properties combining complementary techniques. However, until now,
When magnetic properties are analysed in a TEM using the technique of electron magnetic circular dichroism (EMCD), one of the critical parameters is the sample orientation, and this, independently on the chosen acquisition geometry. Since small orien
Machine learning has emerged as a powerful tool for the analysis of mesoscopic and atomically resolved images and spectroscopy in electron and scanning probe microscopy, with the applications ranging from feature extraction to information compression