ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring star formation in high-z massive galaxies: A mid-infrared to submillimeter study of the GOODS NICMOS Survey sample

229   0   0.0 ( 0 )
 نشر من قبل Marco Viero P
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the mean mid-infrared-to-submillimeter flux densities of massive (Mast approx 2 times 10^11 Msun) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalog on maps: at 24 {mu}m (Spitzer/MIPS); 70, 100, and 160{mu}m (Herschel/PACS); 250, 350, 500{mu}m (BLAST); and 870{mu}m (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star-formation rate of SFR = 63 [48, 81] Msun yr^-1 . We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disk-like and spheroid-like, according to their Sersic indices, n. We find evidence that most of the star formation is occurring in n leq 2 (disk-like) galaxies, with median [interquartile] SFR = 122 [100,150] Msun yr^-1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14 [9,20] Msun yr^-1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.



قيم البحث

اقرأ أيضاً

We carried out extremely sensitive Submillimeter Array (SMA) 340 GHz (860 micron) continuum imaging of a complete sample of SCUBA 850 micron sources (>4 sigma) with fluxes >3 mJy in the GOODS-N. Using these data and new SCUBA-2 data, we do not detect 4 of the 16 SCUBA sources, and we rule out the original SCUBA fluxes at the 4 sigma level. Three more resolve into multiple fainter SMA galaxies, suggesting that our understanding of the most luminous high-redshift dusty galaxies may not be as reliable as we thought. 10 of the 16 independent SMA sources have spectroscopic redshifts (optical/infrared or CO) to z=5.18. Using a new, ultradeep 20 cm image obtained with the Karl G. Jansky Very Large Array (rms of 2.5 microJy), we find that all 16 of the SMA sources are detected at >5 sigma. Using Herschel far-infrared (FIR) data, we show that the five isolated SMA sources with Herschel detections are well described by an Arp 220 spectral energy distribution template in the FIR. They also closely obey the local FIR-radio correlation, a result that does not suffer from a radio bias. We compute the contribution from the 16 SMA sources to the universal star formation rate (SFR) per comoving volume. With individual SFRs in the range 700-5000 solar masses per year, they contribute ~30% of the extinction-corrected ultraviolet-selected SFR density from z=1 to at least z=5. Star formation histories determined from extinction-corrected ultraviolet populations and from submillimeter galaxy populations only partially overlap, due to the extreme ultraviolet faintness of some submillimeter galaxies.
We investigate the relation between star formation rates and local galaxy environment for a stellar mass selected galaxy sample in the redshift range 1.5 < z < 3. We use near-infra-red imaging from an extremely deep Hubble Space Telescope survey, the GOODS-NICMOS Survey (GNS) to measure local galaxy densities based on the nearest neighbour approach, while star-formation rates are estimated from rest-frame UV-fluxes. Due to our imaging depth we can examine galaxies down to a colour-independent stellar mass completeness limit of log Mast = 9.5 Modot at z ~ 3. We find a strong dependence of star formation activity on galaxy stellar mass over the whole redshift range, which does not depend on local environment. The average star formation rates are largely independent of local environment apart from in the highest relative over-densities. Galaxies in over-densities of a factor of > 5 have on average lower star formation rates by a factor of 2 - 3, but only up to redshifts of z ~ 2. We do not see any evidence for AGN activity influencing these relations. We also investigate the influence of the very local environment on star-formation activity by counting neighbours within 30 kpc radius. This shows that galaxies with two or more close neighbours have on average significantly lower star formation rates as well as lower specific star formation rates up to z ~ 2.5. We suggest that this might be due to star formation quenching induced by galaxy merging processes.
We present a study of the far-IR properties of a stellar mass selected sample of 1.5 < z < 3 galaxies with log(M_*/M_sun) > 9.5 drawn from the GOODS NICMOS Survey (GNS), the deepest H-band Hubble Space Telescope survey of its type prior to the instal lation of WFC3. We use far-IR and sub-mm data from the PACS and SPIRE instruments on-board Herschel, taken from the PACS Evolutionary Probe (PEP) and Herschel Multi-Tiered Extragalactic Survey (HerMES) key projects respectively. We find a total of 22 GNS galaxies, with median log(M_*/M_sun) = 10.8 and z = 2.0, associated with 250 um sources detected with SNR > 3. We derive mean total IR luminosity log L_IR (L_sun) = 12.36 +/- 0.05 and corresponding star formation rate SFR_(IR+UV) = (280 +/- 40) M_sun/yr for these objects, and find them to have mean dust temperature T_dust ~ 35 K. We find that the SFR derived from the far-IR photometry combined with UV-based estimates of unobscured SFR for these galaxies is on average more than a factor of 2 higher than the SFR derived from extinction corrected UV emission alone, although we note that the IR-based estimate is subject to substantial Malmquist bias. To mitigate the effect of this bias and extend our study to fainter fluxes, we perform a stacking analysis to measure the mean SFR in bins of stellar mass. We obtain detections at the 2-4 sigma level at SPIRE wavelengths for samples with log(M_*/M_sun) > 10. In contrast to the Herschel detected GNS galaxies, we find that estimates of SFR_(IR+UV) for the stacked samples are comparable to those derived from extinction corrected UV emission, although the uncertainties are large. We find evidence for an increasing fraction of dust obscured star formation with stellar mass, finding SFR_IR/SFR_UV propto M_*^{0.7 +/- 0.2}, which is likely a consequence of the mass--metallicity relation.
128 - J. R. Mullaney 2011
We present a study of the infrared properties of X-ray selected, moderate luminosity (Lx=10^{42}-10^{44}ergs/s) active galactic nuclei (AGNs) up to z~3, to explore the links between star formation in galaxies and accretion onto their central black ho les. We use 100um and 160um fluxes from GOODS-Herschel -the deepest survey yet undertaken by the Herschel telescope- and show that in >94 per cent of cases these fluxes are dominated by the host. We find no evidence of any correlation between the X-ray and infrared luminosities of moderate AGNs at any redshift, suggesting that star-formation is decoupled from nuclear (AGN) activity. The star formation rates of AGN hosts increase strongly with redshift; by a factor of 43 from z<0.1 to z=2-3 for AGNs with the same X-ray luminosities. This increase is consistent with the factor of 25-50 increase in the specific star formation rates (SSFRs) of normal, star-forming (main-sequence) galaxies. Indeed, the average SSFRs of AGN hosts are only marginally (20 per cent) lower than those of main-sequence galaxies, with this small deficit being due to a fraction of AGNs residing in quiescent (low-SSFR) galaxies. We estimate 79+/-10 per cent of moderate AGNs are hosted in main-sequence galaxies, 15+/-7 per cent in quiescent galaxies and <10 per cent in strongly starbursting galaxies. The fractions of all main sequence galaxies at z<2 experiencing a period of moderate nuclear activity is strongly dependent on galaxy stellar mass (Mstars); rising from a few per cent at Mstars~10^{10}Msun to >20 per cent at Mstars>10^{11}Msun. Our results indicate that it is galaxy stellar mass that is most important in dictating whether a galaxy hosts a moderate luminosity AGN. We argue that the majority of moderate nuclear activity is fuelled by internal mechanisms rather than violent mergers, suggesting that disk instabilities could be an important AGN feeding mechanism.
ABRIDGED-This paper presents the first direct estimate of the 3D clustering properties of far-infrared sources up to z~3. This has been possible thanks to the Pacs Evolutionary Probe (PEP) survey of the GOODS South field performed with the PACS instr ument onboard the Herschel Satellite. An analysis of the two-point correlation function over the whole redshift range spanned by the data reports for the correlation length, r_0~6.3 Mpc and r_0~6.7 Mpc, respectively at 100um and 160um, corresponding to dark matter halo masses M>~10^{12.4} M_sun. Objects at z~2 instead seem to be more strongly clustered, with r_0~19 Mpc and r_0~17 Mpc in the two considered PACS channels. This dramatic increase of the correlation length between z~1 and z~2 is connected with the presence of a wide, M>~10^{14} M_sun, filamentary structure which includes more than 50% of the sources detected at z~2. An investigation of the properties of such sources indicates the possibility for boosted star-forming activity in those which reside within the overdense environment with respect of more isolated galaxies found in the same redshift range. Lastly, we also present our results on the evolution of the relationship between luminous and dark matter in star-forming galaxies between z~1 and z~2. We find that the increase of (average) stellar mass in galaxies <M*> between z~1 and z~2 is about a factor 10 lower than that of the dark matter haloes hosting such objects (<M*>[z~1]/<M*>[z~2] ~ 0.4 vs M_{halo}[z~1]/M_{halo}[z~2] ~ 0.04). Our findings agree with the evolutionary picture of downsizing whereby massive galaxies at z~2 were more actively forming stars than their z~1 counterparts, while at the same time contained a lower fraction of their mass in the form of luminous matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا