ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimized conditions for direct imaging of bonding charge density in electron microscopy

155   0   0.0 ( 0 )
 نشر من قبل James Ciston
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observability of valence bonding effects in aberration-corrected high resolution electron microscopy (HREM) images along the [010] projection of the mineral Forsterite(Mg2SiO4). We have also performed exit wave restorations using simulated noisy images and have determined that both the intensities of individual images and the modulus of the restored complex exit wave are most sensitive to bonding effects at a level of 25% for moderately thick samples of 20-25 nm. This relatively large thickness is due to dynamical amplification of bonding contrast arising from partial de-channeling of 1s states.



قيم البحث

اقرأ أيضاً

Phase imaging in electron microscopy is sensitive to the local potential including charge redistribution from bonding. We demonstrate that electron ptychography provides the necessary sensitivity to detect this subtle effect by directly imaging the c harge redistribution in single layer boron nitride. Residual aberrations can be measured and corrected post-collection, and simultaneous atomic number contrast imaging provides unambiguous sub-lattice identification. Density functional theory calculations confirm the detection of charge redistribution.
The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified $textit{ab initio}$ description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.
Charge-density-waves (CDW) which occur mainly in low-dimensional systems have a macroscopic wave function similar to superfluids and superconductors. Kosterlitz-Thouless (KT) transition is observed in superfluids and superconductors, but the presence of KT transition in ultra-thin CDW systems has been an open problem. We report the direct real-space observation of CDWs with new order states in mono-, bi-, and tri-layer 1T-TaS_2 crystal by using a low voltage scanning-transmission-electron-microscope (STEM) without a substrate. This method is ideal to observe local atomic structures and possible defects. We clearly observed that the mono-layer crystal has a new triclinic stripe CDW order without the triple q condition q_1 + q_2 + q_3 = 0. A strong electron-phonon interaction gives rise to new crevasse (line) type defects instead of disclination (point) type defects due to the KT transition. These results reaffirm the importance of the electron-phonon interaction in mono-layer nanophysics.
In this study, we have used a Zr-Nb alloy containing well-defined nano-precipitates as a model material in which to study imaging contrast
118 - A. Tomic , Zs. Rak , J. P. Veazey 2008
We have studied the nature of the surface charge distribution in CeTe3. This is a simple, cleavable, layered material with a robust one-dimensional incommensurate charge density wave (CDW). Scanning tunneling microscopy (STM) has been applied on the exposed surface of a cleaved single crystal. At 77 K, the STM images show both the atomic lattice of surface Te atoms arranged in a square net and the CDW modulations oriented at 45 degrees with respect to the Te net. Fourier transform of the STM data shows Te square lattice peaks, and peaks related to the CDW oriented at 45 degrees to the lattice peaks. In addition, clear peaks are present, consistent with subsurface structure and wave vector mixing effects. These data are supported by electronic structure calculations, which show that the subsurface signal most likely arises from a lattice of Ce atoms situated 2.53 angstroms below the surface Te net.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا