ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryon formation and dissociation in dense hadronic and quark matter

153   0   0.0 ( 0 )
 نشر من قبل Qun Wang
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of baryons as composed of quarks and diquarks in hot and dense hadronic matter in a Nambu--Jona-Lasinio (NJL)--type model. We first solve the Dyson-Schwinger equation for the diquark propagator and then use this to solve the Dyson-Schwinger equation for the baryon propagator. We find that stable baryon resonances exist only in the phase of broken chiral symmetry. In the chirally symmetric phase, we do not find a pole in the baryon propagator. In the color-superconducting phase, there is a pole, but is has a large decay width. The diquark does not need to be stable in order to form a stable baryon, a feature typical for so-called Borromean states. Varying the strength of the diquark coupling constant, we also find similarities to the properties of an Efimov states.



قيم البحث

اقرأ أيضاً

157 - S. Schramm , J. Steinheimer 2011
We present a general approach to incorporate hadronic as well as quark degrees of freedom in a unified approach. This approach implements the correct degrees of freedom at high as well as low temperatures and densities. An effective Polyakov loop fie ld serves as the order parameter for deconfinement. We employ a well-tested hadronic flavor-SU(3) model based on a chirally symmetric formulation that reproduces properties of ground state nuclear matter and yields good descriptions of nuclei and hypernuclei. Excluded volume effects simulating the finite size of the hadrons drive the transition to quarks at high temperatures and densities. We study the phase structure of the model and the transition to the quark gluon plasma and compare results to lattice gauge calculations.
Neutrino propagation in protoneutron stars requires the knowledge of the composition as well as the dynamical response function of dense hadronic matter. Matter at very high densities is probably composed of other particles than nucleons and little i s known on the Fermi liquid properties of hadronic multicomponent systems. We will discuss the effects that the presence of $Lambda$ hyperons might have on the response and, in particular, on its influence on the thermodynamical stability of the system and the mean free path of neutrinos in dense matter.
An extended chiral SU(3) model is applied to the description of dense, hot and strange hadronic matter. The degrees of freedom are the baryon octet and decuplet and the spin-0 and spin-1 meson multiplets. The parameters of the model are fitted to the hadron masses in vacumm, infinite nuclear matter properties and soft pion theorems. At high densities the appearance of density isomers cannot be ruled out and extrapolation to finite temperature exhibits a first order phase transition at $T approx 150 MeV$. The predicted dropping baryon masses lead to drastically changed particle ratios compared to ideal gas calculations.
We describe the Mott dissociation of pions and kaons within a Beth-Uhlenbeck approach based on the PNJL model, which allows for a unified description of bound, resonant and scattering states. Within this model we evaluate the temperature and chemical potential dependent modification of the phase shifts both in the pseudoscalar and scalar isovector meson channels for $N_f=2+1$ quark flavors. We show that the character change of the pseudoscalar bound states to resonances in the continuum at the Mott transition temperature is signaled by a jump of the phase shift at the threshold from $pi$ to zero, in accordance with the Levinson theorem. In particular, we demonstrate the importance of accounting for the scattering continuum states, which ensures that the total phase shift in each of the meson channels vanishes at high energies, thus eliminating mesonic correlations from the thermodynamics at high temperatures. In this way, we prove that the present approach provides a unified description of the transition from a meson gas to a quark-gluon plasma. We discuss the occurrence of an anomalous mode for mesons composed of quarks with unequal masses which is particularly pronounced for $K^+$ and $kappa^+$ states at finite densities a a possible mechanism to explain the horn effect for the $K^+/pi^+$ ratio in heavy-ion collisions.
Bulk matter produced in heavy ion collisions has multiple conserved quantum numbers like baryon number, strangeness and electric charge. The diffusion process of these charges can be described by a diffusion matrix describing the interdependence of d iffusion of different charges. The diffusion coefficient matrix is estimated here from the Boltzmann kinetic theory for the hadronic phase within relaxation time approximation. In the derivation for the same, we impose the Landau-Lifshitz conditions of fit. This leads to e.g. the diagonal diffusion coefficients to be manifestly positive definite. The explicit calculations are performed within the ambit of hadron resonance gas model with and without excluded volume corrections. It is seen that the off-diagonal components can be significant to affect the charge diffusion in a fluid with multiple conserved charges. The excluded volume correction effects is seen to be not significant in the estimation of the elements of the diffusion matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا